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Fig. 8. Measured reflectance Kx 

for a CBO multilayer reflecting 0 
polarizer whose indices consist 400 600 800 1000 1200 
of alternating layers that are Wavelength (nm) 
matched along both the x and 
z axes and mismatched along they  axis. For this example (A),n,, = 1.57, n, = 1.86, n,, = 1.57, n, 
= 1.57, n,,, = 1.57, n, = 1.57, and no = 1.0. (B) When measured in t hey  dkection, reflection shows 
a strong band at near 100% intensity. Along the x direction, there are only air interface reflections. 
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Dynamic Variations at  the Base 
of the Solar Convection Zone 
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We have detected changes in the rotation of the sun near the base of its 
convective envelope, including a prominent variation with a period of 1.3 years 
at low latitudes. Such helioseismic probing of the deep solar interior has been 
enabled by nearly continuous observation of its oscillation modes with two 
complementary experiments. Inversion of the global-mode frequency splittings 
reveals that the largest temporal changes in the angular velocity R are of the 
order of 6 nanohertz and occur above and below the tachocline that separates 
the sun's differentially rotating convection zone (outer 30% by radius) from the 
nearly uniformly rotating deeper radiative interior beneath. Such changes are 
most pronounced near the equator and at high latitudes and are a substantial 
fraction of the average 30-nanohertz difference in R with radius across the 
tachocline at the equator. The results indicate variations of rotation close to 
the presumed site of the solar dynamo, which may generate the 22-year cycles 
of magnetic activity. 
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motion in that region. We are thus motivat- 
ed to use helioseismology-- to look for 
changes in rotation profiles near the ta-
chocline as the sun's magnetic cycle 
progresses. Here, we present evidence that 
the rotation rate in the interior changes with 
time, with unexpected periods of -1.3 
years near the equator and possibly 1.0 year 
at high latitudes. 

Helioseismology provides the means to 
probe the interior structure and dynamics of 
the sun, using precise observations of the 
modes of oscillation (2). In particular, the 
splitting of the global oscillation frequen- 
cies by large-scale flows has successfully 
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Fig. 1. Time-averaged rotation rates O/Zm ob- 
tained from RLS inversion of GONG frequency 
splittings, plotted against radius at different 
latitudes. The tachocline is evident near the 
base of the convection zone, which is deter- 
mined to be at a radius of 0.713R (5). Dashed 
lines represent lo error bounds for a single 
inversion. 

been used to investigate how the sun's 
rotation varies with radius and latitude 
throughout much of the solar interior (3). It 
was thus found that the angular velocity 
observed near the solar surface, where the 
rotation is faster at the equator than near the 
poles, extends through much of the convec- 
tion zone (occupying the outer 30% by 
radius, namely 200 Mm) with little radial 
dependence. The tachocline (4, 5) is a re- 
gion of strong shear at the base of the 
convection zone, where the angular veloc- 
ity adjusts to apparent solid-body rotation 
in the deeper radiative interior (Fig. 1). 
There is also a thin shear boundary layer 
near the surface (-5% by radius or 35 Mm 

in depth) in which rotation increases with 
depth at intermediate and low latitudes. 

Study of the evolution of such dynami- 
cal structures deep within the sun has now 
become feasible with the nearly continuous 
full-disk Doppler observations of the sun 
provided by two independent but comple- 
mentary helioseismic studies ( 6 ) ,  namely 
the Global Oscillation Network Group 
(GONG) project involving six ground- 
based observatories and the Michelson 
Doppler Imager (MDI) instrument aboard 
the Solar and Heliospheric Observatory 
(SOHO) spacecraft. The basic data for the 
analyses are frequency splittings resulting 
from solar rotation for a broad range of f- 
and p-mode oscillations (2) derived over a 
4.5-year time span (from May 1995 to No- 
vember 1999). These are represented in 
terms of polynomial expansions in the az- 
imuthal order of the modes; the coefficients 
in these expansions (the so-called a coeffi- 
cients) depend on the radial order and de- 
gree of the modes. The data from the 
GONG network were obtained as 41 over- 
lapping 108-day sets with starting points 
separated by 36 days, whereas the MDI 
data consisted of 16 nonoverlapping 72-day 
sets (7). There is considerable temporal 
overlap, although the GONG observations 
began earlier and MDI had a data gap while 
control of SOHO was temporarily lost. The 
odd a coefficients were inverted by two 
different techniques (8) ,  subtractive opti- 
mally localized averaging (OLA) and reg- 
ularized least squares fitting (RLS), to infer 
the angular velocity fl as a function of 
distance r from the solar center and latitude 
0. For each experiment (i.e., a given choice 

of data set, either GONG or MDI, and 
inversion method), we calculated an aver- 
age rotation profile over all the time peri- 
ods and subtracted this temporal average 
(Fig. 1) from the individual profiles. The 
resulting residuals Sfl (r, 0; t) (t represent- 
ing the epoch of the observations) form the 
basis for the subsequent investigation. 

Temporal variations of the residuals Sf2 
are evident (Fig. 2) at selected (r, 0) points 
using the two independent data sets and the 
two different inversion methods. The two 
selected radii, 0.72R and 0.63R (where R is 
the photospheric radius), lie just above and 
below the tachocline [which is centered at 
0.69R, as in (91, respectively; the former is 
near the base of the convection zone, and the 
latter is in the radiative interior. The residuals 
close to the equator show distinct oscillations 
with a period of - 1.3 years at both radii. The 
clearest signal of an oscillatory flow is in the 
equatorial plane at the radius 0.72R (Fig. 2A), 
having a peak-to-peak variation of -6 nHz, 
and in the companion deeper site at 0.63R 
(Fig. 2D), where the phase of the signal is 
reversed. A smaller amplitude signal is seen 
at these depths at 30' latitude (Fig. 2, B and 
E). Variations are also visible at the higher 
latitude of 60°, where the overall variation 
has increased to -12 nHz (Fig. 2C), but the 
signal is more complex. The two sets of 
observations track well together, and there is 
good agreement between the two inversion 
techniques (9). This lends credence to the 
physical reality of the variations. 

Although the variations in 6fl are not 
strictly periodic, we can estimate the mean 
period at a given location by sine-wave 
fitting (Figs. 3 and 4). The variation of 

Fie. 2. Variation with 
ti;Ge of the residuals 
Sn/Z.rr in rotation rate 
at radius 0.72/?, for 
the three latitudes of 
(A) 0" (equator), (B) 
30°, and (C) 60°, and 
similarly at radius 
0.63R for the lati- 
tudes of (D) 0". (E) 
30°, and (F) 60". The 
symbols denote the 
data-inversion pair- 
ings: GONG-RLS (sol- 
id circles, black), 
GONG-OLA (open 
circles, black), MDI- 
RLS (solid triangles, 
red), and MDI-OLA 
(open triangles, red). 
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Fig. 3 (left). Sine-wave fitting in time of residuals 6RIZa in rotation rate Power spectrum (a: + a:) of sine-wave fits; dashed lines show l a  error 
at the equator determined from RLS inversion of GONG data. For each bounds. (C) Power at 0.78-year-' frequency as a function of latitude at 
frequency v, a single sine wave of variable phase [y  = a, cos(2avt) f 0.72R. (D) Power at the frequency in (C) as a function of radius at the 
a, s in(2rvt) l  was fitted t o  the t ime series. (A) Variation at the equator equator. Fig. 4 (right). Sine-wave fitting results at a Latitude of 60" 
of 6Cl/2r at radius 0.72R, showing the best f i t  sinusoid (0.78 years-') for RLS inversion of GONG data. The notation is the same as in Fig. 3; the 
as a solid curve. Error bars in (A), (C), and (D) indicate l a  errors. (B) dominant frequency is 1.00 year-'. 

power with frequency (Fig. 3B) at 0.72R at 
the equator peaks at 0.8 years-', corre-
sponding to a period of 1.3 years; the signal 
reconstructed from only that frequency is 
superposed on the data in Fig. 3A.  This 
single period appears to capture much of 
the variation in 6 0 ,  although the data in- 
terval encompasses only about three cycles. 
Furthermore, analysis of power at that fre- 
quency with latitude (Fig. 3C)  and with 
radius (Fig. 3D) reveals that the response is 
confined to low latitudes and peaks at radii 
0.72R and 0.63R. At 0.63R, the equatorial 
6f l  signal at that frequency is nearly anti- 
correlated with the signal at 0.72R. These 
results are supported by the other experi- 
ments (IO). A corresponding sine-wave fit 
of 6 0  for latitude 60" and radius 0.72R 
(Fig 2C) is illustrated in Fig. 4. The vari- 
ations there are more complex, showing 
multiple peaks in power (Fig. 4B), with the 
largest at frequency 1.0 year-' (a period of 
1.0 year). We place less importance (10) on 
this identification because of the noisier 
and more complicated signal, but clearly 
there is a strong signal (Fig. 4A) that is 
confined to the higher latitudes (Fig. 4C) 
and to the base of the convection zone (Fig. 
4D). Unlike at lower latitudes. it is more 
difficult to characterize these variations in 
terms of a single frequency. However, the 
correspondence between GONG and MDI 
in the large excursions, particularly from 
early 1998 onward, is striking. The signif- 
icance of the fit in Fig. 3B is substantially 

reduced at a period of 1.0 year compared 
with 1.3 years (the power is lower at a 
period of 1.0 year by a factor of 4), so it is 
improbable that the variations detected at 
the equator are a product of systematic 
annual changes in observing conditions or 
of the orbit of SOHO. Furthermore, al- 
though the variations illustrated in Fig. 4 do 
have a dominant period of 1.0 year, the 
signal at this period is apparent only near 
0.72R and 60" (Fig. 4, C and D). which 
again argues against the variations being 
caused by annual systematic observational 
errors. 

We need to assess whether our inferenc- 
es of changes in 6 0  at differing depths and 
latitudes are genuinely independent mea-
surements or whether they might be arti- 
facts of the inversion procedure. Two is- 
sues are of concern: (i) the finite resolution 
of the inversions and (ii) the correlation 
between the errors in the solutions at dif- 
ferent locations. If these were substantial, 
then a signal (either genuine or a result of 
data errors) at 0.72R at the equator could 
bleed into the inferred solution at other 
locations. The finite resolution of the inver- 
sions causes a genuine signal at one loca- 
tion to be perceived also at other locations. 
A quantitative measure of this effect is 
provided by the averaging kernels: the in- 
ferred solution at a given location is, apart 
from errors, an average of the true solution 
weighted by the averaging kernel. An ex- 
ample of such an averaging kernel, show- 

ing how the solution at radius 0.72R on the 
equator is a weighted average of the rota- 
tion over a range of radii and latitudes, is 
shown in Fig. 5A. Averaging kernels at 
nearby radii and latitudes are similar. Be- 
cause the resolution kernels in the region of 
interest are localized, with weights that are 
generally positive, resolution issues cannot 
account for the anticorrelation between the 
oscillations at 0.72R and 0.63R on the 
equator. Error correlation between different 
points is a more serious concern: the inver- 
sions at different locations are based on the 
same observational data, so the effects of 
data noise on the inferences at different 
locations are correlated. Examination of the 
error correlation functions (Fig. 5 ,  B and D) 
shows that the error correlation between 
0.72R and 0.63R at the equator is indeed 
negative, but its magnitude is only -0.2 for 
OLA inversion of MDI data and -0.4 for 
the other combinations. Thus, we infer that 
it is unlikely that error correlation accounts 
for the anticorrelated temporal variations 
apparent at these locations. 

Inversions of global modes are sensitive 
only to that component of rotation which is 
symmetrical around the equator (3). Thus, 
the signals illustrated at 30' and 60" lati-
tude are in fact the symmetrized compo- 
nents of the true variations in the sun. If the 
latter have a substantial antisymmetrical com- 
ponent, which is possible, then the actual fluc- 
tuations might be larger than those inferred 
here. 
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The detection of substantial variations 
in rotation rate in the vicinity of the ta-
chocline is of particular interest because 
this region of strong radial shear is thought 
to play a crucial role in the cyclic genera
tion of magnetic fields. The overall varia
tions of 6 to 12 nHz in 511 found at low and 
high latitudes represent significant signals 
when compared to the change of 30 to 55 
nHz (Fig. 1) in H across the tachocline 
(which varies with latitude in magnitude 
and in the sign of the rotation gradient). 

The oppositely signed tachocline shear at 
low and high latitudes has a pivotal influ
ence on the mean-field interface dynamos 
(1) currently being considered. These dy
namo models seek to provide explanations 
for the orderly aspects of cyclic variation of 
the large-scale magnetic activity, involving 
sunspot eruptions with well-defined rules 
for field parity and emergence latitudes. 
Such highly parameterized models of mag
netized turbulent flow within the tachocline 
have not yet provided detailed predictions 
of changes in H that may be associated with 
field production as the cycle advances. On 
the other hand, the latest three-dimensional 
simulations of turbulent convection in ro
tating spherical shells (11) have made 
progress in explaining aspects of the differ
ential rotation within the convection zone. 
However, such global modeling has not yet 
been able to deal effectively with the in
tense shear and the highly stable stratifica
tion of the tachocline and therefore is un
able to provide reliable estimates of dy
namical variations in 11 expected within a 
zone of rotationally influenced penetrative 
convection. 

The dynamical implications of our detec
tion of 511 variations are therefore difficult 
to assess because the necessary theoretical 
framework for understanding the tachocline 
is still at an early stage. However, several 
dominant properties stand out from our he-
lioseismic inferences. For one, the detected 
time-varying flows appear to extend at least 
to 0.63R, well inside the radiatively stable 
region. This suggests a strong dynamical 
coupling between the convection zone and 
the upper part of the radiative region (5). 
Further, the anticorrelation of 511 between 
radii 0.72R and 0.63R at low latitudes sug
gests that angular momentum may be ex
changed across the tachocline. The fact that 
the variation is quasi-periodic is suggestive 
of a back-and-forth exchange of momen
tum. The poloidal component of the mag
netic field presumed to be present near the 
base of the convection zone may be the 
agent responsible for this, as it tends to 
oppose gradients in angular velocity along 
field lines. The Alfven time scale for trans
port of angular momentum may thus set the 
periods observed in the variations, though 
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there is considerable uncertainty in the in
tensity and geometry of the magnetic field 
close to the tachocline. Another dominant 
feature of the helioseismic inferences is 
that variations in 811 are also clearly 
present at high latitudes, but these are more 
erratic in character. There may also be 
some latitudinal angular-momentum ex
change, although this may be weak in view 
of the difference in the dominant periods of 
oscillation. In any case, the larger varia
tions in 5fl at higher latitudes may reflect 
the lesser moment of inertia. 

Our detection of temporal variations 8fl 
near the base of the convection zone calls 
for a continuation of helioseismic data as 
the solar cycle progresses. Our identifica
tion of a probable period of 1.3 years at low 
latitudes is tentative because the data now 
available extend over less than four such 
cycles. We need to determine whether these 
are real periods or aperiodic wobbles and 
whether they are present in the rising and 
waning phases of solar activity. We also 
need to know what relation these variations 
deep in the sun have to the weak bands of 
zonal flow detected within the outer 8% of 
the sun (72), which, like the bands of mag
netic activity, appear at high latitudes and 
migrate toward the equator as the cycle 
proceeds. 

The relatively strong 5fl variations at a 
radius of 0.63R at the equator indicate that 
the radiative interior is more dynamic than 
might otherwise have been expected. Al
though the details of the motion in this 
region, apart from the oscillatory signal 
found here, are as yet unclear, they may 

involve weak vertical transport. Such trans
port would affect the chemical composition 
of the region beneath the convection zone. 
Interestingly, helioseismic inversion for so
lar structure has revealed a sound-speed 
difference in this region, which can plausi
bly be interpreted as a result of partial 
mixing that partly counteracts the tendency 
for helium to settle beneath the convection 
zone (13). Additional evidence for mixing 
comes from the depletion of the photo-
spheric lithium abundance by a factor of 
— 100, relative to the meteoritic abundance 
(14); nuclear destruction of lithium re
quires temperatures that are —20% higher 
than the temperature at the convection-zone 
base in models of the present sun. Taking 
into account details of the mixing and the 
change with solar evolution in the depth of 
the convection zone, mixing in the present 
sun must extend to a radius of ~0.64i? (15). 
Although the depth to which the time-vary
ing flows found here extend into the radi
ative interior is subject to some uncertainty 
because of the finite resolution of the in
versions, the near-coincidence of the two 
locations is remarkable. The detected vari
ation of rotation close to the presumed site 
of the solar dynamo may thus also have 
bearing on the chemical composition real
ized within the convection zone. 
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