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introduction of the reactive partners into tran- 
siently associated biopolymers might allow 
their covalent trapping within a cell and, as a 
result, the identification of previously unob- 
servable interactions. 
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A Fossil Snake with Limbs 
Eitan Tchernov,' Olivier Rieppel,'* Hussam Zaher,3  

Michael J. Polcyn? Louis L. Jacobs4  

A 95-million-year-old fossil snake from the Middle East documents the most 
extreme hindlimb development of any known member of that group, as i t  
preserves the tibia, fibula, tarsals, metatarsals, and phalanges. I t  is more com- 
plete than Pachyrhachis, a second fossil snake with hindlimbs that was recently 
portrayed to be basal to  all other snakes. Phylogenetic analysis of the rela- 
tionships of the new taxon, as well as reanalysis of Pachyrhachis, shows both 
to be related to macrostomatans, a group that includes relatively advanced 
snakes such as pythons, boas, and colubroids to the exclusion of more primitive 
snakes such as blindsnakes and pipesnakes. 

The lower to middle Cenomanian (basal Up- 
per Cretaceous) carbonates of 'Ein Yabrud 
near Jerusalem, deposited in a low-energy shal- 
low marine platform environment (I), have 
yielded two species of fossil snakes, Pachyrha-
chis problematicus (2-4) and the new taxon 
reported here. Because of the presence of 
relatively well-developed hindlimbs and a 
supposedly primitive skull structure, a series 
of recent publications (5-7) have interpreted 
Pachyrhachis to be basal to all other snakes, 
indeed to represent "an excellent example of 
a transitional taxon" (8) linking snakes to an 
extinct group of "lizards," the mosasauroids. 
On the basis of this pattern of phylogenetic 
relationships, it was claimed that snakes had 
a marine origin (8) and that the mosasauroid 
jaws provided the starting point for the evo- 
lution of the ophidian feeding mechanism (9). 
The transitional position of Pachyrhachis in-
fluenced a scenario explaining the origin and 
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evolution of limblessness in snakes, based 
on the analysis of underlying developmental 
mechanisms as revealed by patterns of Hox 
gene expression in Python (10). The basal 
position of Pachyrhachis and the putative 
relationships of snakes to mosasauroids were 
tested by a review of the character evidence 
and the methods of phylogenetic analysis 
used, and were found to be refuted by the 
position of Pachyrhachis as the sister taxon 
of relatively advanced (i.e., macrostomatan) 
snakes (11-1 5). 

Here, we describe the second snake from 
'Ein Yabrud, which is better preserved than 
Pachyrhachis in the skull and hindlimb, and 
which highly corroborates the macrostomatan 
affinities of these fossil snakes. 

Haasiophis, gen. nov. 
Genotypical species: Haasiophis terrasanc- 

tus, sp. nov. 
Diagnosis:A snake with a snout-vent length 

of 717 mm; premaxilla small and narrow, 
edentulous; 24 tooth positions on the maxilla, 
8 on the palatine, 15 to 17 on the pterygoid, 
and 26 on the dentary; enamel surface of 
teeth distinctly striated; mandibular nerve fo- 
ramen underlapped by distinct prootic pro- 
cess; quadrate slender and vertically oriented; 
coronoid process on mandible small, formed 
by coronoid bone only; 155 precloacal verte- 
brae; at least 12 proximal caudal vertebrae 
with distally expanded and bifurcated lymph- 
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apophyses; expanded hemapophyses on pos- 
terior tail vertebrae. 

Distribution: Early Upper Cretaceous, Mid- 
dle East. 

Haasiophis terrasancttrs, sp. nov. 
Holotype: Hebrew University of Jerusa- 

lem, Paleontological Collections, HUJ-Pal. 
EJ 695. 

Stratum typicum: Aminadav Formation or 
the slightly younger Bet-Meir Formation, 
middle part of the Judea Group, early to 
middle Cenomanian, basal Upper Cretaceous. 

Locus typicus: Limestone quarries of 
'Ein Yabrud, Judean hills, 20 km north of 
Jerusalem. 

Diagnosis: Same as for genus, of which 
this is the only known species (specimen). 

Etymology: Haasiophis, in honor of Prof. 
G. Haas, who initiated research on vertebrate 
fossils from 'Ein Yabrud; ophis (Greek, 
snake); terrasancttls (Latin, Holy Land). 

This specimen is identified as a fossil 
snake on the basis of its highly kinetic skull 
with anteriorly free ending maxillae and den- 
taries, slender and elongate tooth-bearing 
palatines and pterygoids, single mental fora- 
men in the dentary, high number of presacral 
vertebrae, and the presence of hypapophyses 
or hemal ridges throughout the trunk, distally 
bifurcated lymphapophyses in the cloaca1 and 
proximal tail region, and paired hemapophy- 
ses on the tail vertebrae. Its cranial structure 
(Fig. 1) (16) displays relatively primitive 
characters, such as are present in anilioids 
(pipesnakes) with advanced macrostomatan 
features. The extended contact between the 
anteroventrally sloping prefrontal and the as- 
cending process of the maxilla is plesiomor- 
phic, as is the coronoid process on the lower 
jaw formed by the coronoid bone only. Ad- 
vanced features include an elongate preor- 
bital region recalling the condition seen in 
Python; a nearly complete postorbital arch; 
highly mobile connections among the ele- 
ments of the dermal palate and upper jaw 
(vomer, palatine, pterygoid, ectopterygoid, 
maxilla, and premaxilla); the presence of 
well-developed [neomorph (1 7)] basiptery- 
goid processes as revealed by radiographs; a 
slender, elongate, and vertically oriented 
quadrate suspended from a posteriorly free- 
ending supratemporal; the development of 
longitudinal crests for muscle attachment 
both on the skull roof (parietal, supraoccipi- 
tal) and on the skull base (parabasisphenoid 
and basioccipital); and the anterior extent of 
the splenial and development of a deep fossa 

skeleton of Haa.siophis is typically snake- 
like. Pachyostosis of vertebrae and ribs oc- 
curs between the 45th to 48th and the 105th 
to 108th vertebrae, with a distinct hypertro- 
phy of the parapophysis separated by a fur- 
row from the smaller, dorsal diapophyseal 
component of the rib articulation. Anterior 
hypapophyses are gradually transformed to 
distinct hemal ridges along the trunk. Broad 
and plate-like hemapophyses add to the lat- 
eral compression of the tail, which must have 
served as a propulsive organ. 

The last dorsal rib is associated with the 
154th vertebra. There is no evidence for the 

suspension of rudimentary pelvic elements 
from the axial skeleton. Two poorly pre- 
served, obliquely oriented, delicate rods of 
bone, located near the 155th vertebra, may 
represent the pubis and ilium of a rudimen- 
tary, originally triradiate pelvis. The left fe- 
mur (Fig. 2) is a small (7.2 mm long), 
straight, slender element with moderately ex- 
panded proximal and distal ends, which 
emerges from below the last dorsal rib. The 
tibia (3.3 mm), characterized by a relatively 
broad proximal end, has been flipped across 
the fibula (3.1 mm) during fossilization. 
Three tarsal ossifications are identified as 

for the insertion of jaw adductor muscles on 
the lower jaw, ~h~ exoccipitals appear not to Fig. 1. The skull of H. terrasanctus in dorsal (above) and ventral (below) views. Abbreviations: ang, 

angular; bo, basioccipital; bs, basisphenoid (parabasisphenoid); c, coronoid; corn, compound bone; 
meet above the foramen magnum' but this d, dentary; ec, ectopterygoid; eo, exoccipital; f, frontal; m, maxilla; mp, medial process of palatine; 
may well be an artifact of preservation. n, nasal; p, parietal; pl, palatine; pm, premaxilla; po, postorbital; prf, prefrontal; pro, prootic; ps, 

Except for pachyostosis and the well-de- parasphenoid rostrum; pt, pterygoid; q, quadrate; so, supraoccipital; sp, splenial; st, supratemporal; 
veloped hindlimb (Fig. 2), the postcranial and v, vomer. 
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Fig. 2. The limb of H. terrasanctus. Abbrevia- 
tions: as, astragalus; ca, calcaneum; dt4, fourth 
distal tarsal; fe, femur; fi,  fibula; ph, phalanx; 
mt, metatarsal; r, rib (of 154th vertebra); ti, 
tibia. 

astragalus. calcaneum. and the fourth distal 
tarsal. The straight metatarsals of digits two 
through five are at least partially preserved. 
as are two partial phalanges. 

Phylogenetic analysis (Fig. 3 )  (18) shows 
Hirir.siophi.s to be the sister taxon of Pirc-l~j~~.litr- 
c.11i.v. both nested within basal macrostorna- 
tans (i.e.. near pythons and boids). Statistical 
support for the position of Hirusiophis and 
Ptrc~lij~r11crc~hi.s within Alethinophidia (Fig. 3). 

and for their relationship to Macrostomata. is 
strong (18- 20 ) .  By contrast. the position of 
these taxa within basal macrostomatans. as 
well as the sister-group relationship of Hirtr- 
siophi.~ and Ptrc~lij~rliirc~kis. remain weakly 
supported. probably because of their diver- 

varanoid root 
r Anomalepididae 

Typhlopidae 
Leptotyphlopidae 
Dinilysia 

I I 7 Anilius 

Uropeltinae 

+9/99% Haasiophis 

7 Pythoninae 
+ 1156% Erycinae 

+1157% Boinae 
Ungaliophis 
Exiliboa 
Bolyeriidae 
Tropidophis 
Acrochordus 
Colubroidea 

Fig. 3. The phylogenetic relationships of H. 
terrasanctus. A strict consensus tree of two 
equally parsimonious trees is shown [(78); for 
list of apomorphies, see (76)]. 

gent specialization. Boine charactcrs of Hirir- 
siop1ii.s are the laterally projecting proccss of 
the prootic (underlapping the mandibular nerve 
foranlen) and the posteriorly dilated frce-cnd- 
ing process of the supratemporal. Pythoninc 
characters of Pirc~lij~rlitrc~Ai.s are the straight 
frontoparietal suture and the naturc of the 
postorbital-parietal contact. Hiru.siol>his and 
Pirc~1~~rAtrc~hi.s differ in other respects as well. 
such as tooth counts, shape and rclativc sizc 
of the coronoid proccss and quadrate, size of 
the neural spines on the anterior ("cervical") 
vertebrae. differentiation of the ribs. and rel- 
ative proportions of the stylopodial and zeu- 
gopodial limb elements. Hirct.siophi.s therefore 
cannot represent a juvenile specimen of the 
larger Pirc~lij~rlicrc~his. 

Given the relationships of Poc~lij~rlitrc~l~is 
and Htrir.sio/)hi.s to macrostomatans. the pres- 
ence of well-developed hindlimbs optimizes 
unequivocally as a reversal (Fig. 3). Implicit 
weight can be added to the (plesiomorphic) 
presence of limbs by splitting those into dis- 
crete characters numerous enough to pull the 
fossils to the base of the ophidian tree. The 
number of limb characters required to break 
Htrtr.siophi.s and Pac~h~~rliircl~i.s away from 
macrostomatans is 14. and 15 limb characters 
are required to pull these fossils to a basal 
position. Loss of resolution throughout the 
cladogram. caused by the addition of more 
than 13 limb characters. is significant. indi- 
cating that the overall data set matches the 
prediction of a redevelopment of the hind- 
limbs better than it matches the assumption 
that the skulls of Pcrcl~j~rkacki.s and Huirsio- 
phis are convergent on macrostomatans. 

As macrostomatan snakes. Hirirsiophi.~ 
and Pirc11j~rhachi.s have no particular bearing 
on snake-mosasauroid relationships or snake 
origins. Instead. they represent the first un- 
equivocal documentation of the incursion of 
macrostomatan snakes into the sea. Basal 
snakes-including basal macrostomatans- 
retain rudimentary hindlimbs. which. how- 
ever. remain much more incomplete than 
those of Hcrir.siol)hi.s. With H~n.siol)his and 
Poclij~r11ncki.s related to basal macrostoma- 
tans. the conclusion based on parsimony must 
be that these limbs redeveloped from rudi- 
ments such as those present in P l ~ h o n  (10). 
The assumption of a multiple loss of hind- 
limbs among basal snakes is less parsimoni- 
ous but remains a possibility. given the in- 
completeness of the fossil record of snakes 
(21) and the recognition of multiple loss of 
limbs among squamates in general (22) .  
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