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Stone artifacts from the Bose basin, South China, are associated with tektites 
dated to 803,0002 3000 years ago and represent the oldest known large 
cutting tools (LCTs) in East Asia. Bose toolmaking is compatible with Mode 2 
(Acheulean) technologies in Africa in its targeted manufacture and biased 
spatial distribution of LCTs, large-scale flaking, and high flake scar counts. 
Acheulean-like tools in the mid-Pleistocene of South China imply that Mode 2 
technical advances were manifested in East Asia contemporaneously with 
handaxe technology in Africa and western Eurasia. Bose lithic technology is 
associated with a tektite airfall and forest burning. 

A boundary between East Asia and western 
EurasiaIAfrica was defined by Movius (1, 2) 
to mark a geographic separation in early hu- 
man technology and behavioral competence 
during most of the Pleistocene. Movius and 
others (3) observed that technologically sim- 
ple methods of stone flaking persisted in 
China and Southeast Asia during the period 
when ovate large cutting tools (LCTs), spe- 
cifically Acheulean bifacial handaxes and 
cleavers, characterized western Eurasia and 
Africa (currently dated at 1.6 to 0.2 million 
years ago). The boundary, known as the Mo- 
vius Line, implies that Pleistocene East Asian 

populations were culturally and possibly ge- 
netically isolated ( 4 ) , a situation that was 
reinforced by stable forest habitat east of the 
boundary (2, 5). Although the Movius Line 
has attracted criticism (6-a), little evidence 
to contradict it has been presented (9. 10). 
Analyses of Acheulean technology ( II. I?) 
have concluded that the targeted manufacture 
of LCTs signifies an important advance in 
hominin behavior (enhanced planning and 
technical competence) for which evidence 
has been lacking in the early stone technolo- 
gy of East Asia. 

Here we describe stone tools from the 
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mid-Pleistocene of the Bose basin (13) in the 
Guangxi Zhuang Autonomous Region (Fig. 
1) of China that provide the oldest evidence 
of LCT manufacture in East Asia, contempo- 
raneous with Acheulean LCTs in western 
Eurasia and Africa. The basin covers -800 
krn2 and is dissected by the Youjiang River 
from northwest to southeast. Laterized fluvial 
deposits of late Pliocene and Pleistocene age 
crop out as seven river terraces (TI through 
T7) of differing elevation associated with 
episodic uplift of the Qinghai-Tibetan Plateau 
(14). 

Sediments of terrace 4 (T4) preserve con- 
centrations of Paleolithic stone artifacts and 
dispersed tektites. The terrace, which has 
been fragmented by faulting, foims several 
platforms situated 25 to 100 m above the 
present river level. T4 consists of an upper 
sedimentary unit, 7 to 10 m thick, of poorly 
developed latosols underlain by reticular 
mottled red clay typical of laterites and of a 
lower unit, 5 to 20 m thick, of well-sorted 
cobble conglomerate. Tektites and artifacts 
are distributed in the upper unit within a zone 
20 to 100 cm thick, which is typically 6 to 
7 m above the top of the lower unit of T4. 
Paleolithic artifacts are abundant on the ter- 
race surface and in three excavation localities 
tested between 1988 and 1996 (15) and have 
not been found in any of the other terraces. 

The artifacts consist of extensively chipped 
cobbles of quartz, quartzite, sandstone, and 
chert and associated flakes (Fig. 2). Raw 
materials were obtainable from the basal con- 
glomerates of T5 through T7, which were 
exposed during the period of artifact manu- 
facture and deposition on the fluvial flood- 
plain of T4 before its uplift. 

The age of the stone artifacts is estab- 
lished by 40Ar/39Ar analyses on three sus- 
pected Australasian tektites collected in situ 
from two localities (two tektites from Bogu 
and one from Yangwu) precisely associated 
with the artifacts of T4 (16, 17). Three to four 
replicate, 15- to 16-step, incremental heating 
experiments were performed on each sample. 
All experiments yielded plateaus (sequences 
of three or more steps in which the ages could 
not be mutually distinguished at the 95% 
confidence level), usually incorporating more 
than 80% of the total 39Ar released (18). 
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Inverse isochron analysis (36Ar/40Ar versus 
39Ar/40Ar) of plateau steps yielded ages con- 
cordant with plateau mean ages. The compo- 
sitions of trapped argon inferred from the 
isochrons were within error of the atmospher- 
ic 40Ar/39Ar ratio, although there was an 
overall tendency toward greater-than-atmo- 
spheric ratios. Isochron ages are preferred 
over the straight weighted-mean calculation 
of ages from plateau steps because of the 
ability of the isochron analysis to accommo- 
date deviations from atmospheric 40Ar/36Ar 
composition in the samples. Isochron ages 
range from 761 + 17 to 8 16 -f 7 thousand 
years ago (ka). The best representative age is 
considered to be the overall weighted mean 
of the isochron ages from the three samples: 
803 -C 3 ka (la). Previous 40Ar/39Ar ages of 
significant precision for the Australasian tek- 
tites are 783 + 21 ka (19) and 784 + 12 ka 
(20). These ages are concordant with our 
result, within error, and confirm the attribu- 
tion of the tektites to the Australasian strewn 
field (21). 

This result precisely calibrates the Bose 
artifacts and dates the sole period of Paleo- 
lithic toolmaking in the basin to the time of 
the strewn field. The age is well within the 
range of Acheulean assemblages of Africa 
and western Asia and is older than Acheulean 
occurrences in Europe and the elaboration 
of symmetry and craftsmanship in the late 
Acheulean (<500 ka) (12, 22). 

The contrast between East Asian and 
western EurasianIAfrican toolmaking has been 
described in terms of Mode 1 (Oldowan-like, 
simple corelflake) versus Mode 2 (Acheulean- 

like, bifacial LCT) technology (23). Mode 1 
is the oldest known type of stone flaking, well 
documented in excavated stone artifact sam- 
ples from Beds I and I1 at Olduvai Gorge, 
Tanzania (24-26). Mode 2 provides the old- 
est evidence of targeted manufacture of large 
coreltool forms, such as handaxes, cleavers, 
knives, and picks. These LCT morphologies 
are typically ovate with distinctive tip ends 
(thin and convergent) and butt ends (thicker, 
sometimes unmodified). Mode 2 LCTs are 
made from large flakes, flat cobbles, or nod- 
ules whose properties enable thinning by per- 
cussion. Characteristics that differ from those 
of Mode 1 include manipulation and shaping 
of large rocks; production of flakes > 10 cm, 
which were often the initial pieces on which 
LCTs were made; production of standardized 
tool forms (LCTs) that suggest the use of 
prescriptive procedures of percussion flaking 
(9, 27); large flake scar facets; and high flake 
scar counts. On a basinwide scale, moreover, 
Mode 2 artifacts tend to occur in a biased 
spatial distribution, with LCTs being abun- 
dant in delimited areas (such as paleochan- 
nels) but rare elsewhere in laterally equiva- 
lent strata (such as floodplains) (28,29). This 
spatial bias is unknown in Mode 1. 

Bose stone technology exhibits all of 
these Mode 2 characteristics (Table I). The 
analytical sample from Bose (n = 991 spec- 
imens) is composed of excavated (84%) and 
surface-collected (16%) artifacts in generally 
very fresh condition (sharp strjking platforms 
and flake scar intersections). The sample is 
characterized by the manipulation of signifi- 
cantly larger pieces of raw material than in 

EOCENE I OLIGOCENE DEPOSITS 

PLIOCENE & QUATERNARY DEPOSITS 

FAULT 

MAIN PAtEOLtTHlC SITES 

Fig. 1. Location of stone artifacts and tektites in the Bose basin. Artifact-bearing Quaternary 
deposits are distributed along the Youjiang River. Archeological surface and excavation sites are as 
follows: 1, Shangsong; 2, Dongzeng; 3, Hengshandao; 4, Dawan; 5, Shazhou; 6, Yangwu; 7, Cimu; 8, 
Nanposhan; 9, Jiangfeng and Datong; 10, Bogu; 11, Dafa; 12, Xiaguo; 13, Xiaomei and Nalian; 14, 
Damei; 15, Laikui; 16, Nayin (cave); 17, Napo; 18, Pinghepo; 19, Sanlei; 20, Xinzhou; 21, Ganlian; 22, 
Bodu; 23, Gaolingpo; and 24, Silin. 
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Fig. 2. Bifacial LCTs 
from the Bose basin. 
(A) Bogu 91001, no. 1, 
made on a large cob- 
ble. (B) Hengshandao 
94, no. 3, made on a 
large flake with mini- 
mal retouching on the 
ventral surface. (C) 
Yangwu 91003, no. 1, 
made on a large flake. 
The right and left 
sides of the figure 
show opposite faces 
of each LCT. Scale bars 
at lower right of each 
image indicate 1 cm. 

Mode 1 (30) and the detachment of flakes 
>10 cm in maximum dimension (31). After 
large flake removal, numerous smaller flakes 
(0.5 to 3.0 cm) were struck from either the 
modified cobbles or the large flakes, a com- 
bination that characterized Acheulean LCT 
edge shaping. Unifacial and bifacial LCTs, 
which possess clearly defined tip and butt 
ends, make up 58% of all flaked pieces (n = 
172), which is well above the minimum fre- 
quency (40%) defined by Leakey (24) for the 
African Acheulean. Because of the preva- 
lence of thick asymmetrical cobbles as an 
initial form (91% of all flaked pieces; 80% of 
LCTs) and unifacial flaking (72% of all 
flaked pieces; 65% of LCTs), the overall 
artifact sample can be distinguished from 
Acheulean bifacial reduction of large flakes 
or soft-hammer thinning (32-34). Nonethe- 

less, specific artifact forms closely match 
those of Acheulean LCTs (Fig. 2). Although 
unifacial flaking dominates, a strong degree 
of bifacial flaking is present on 35% of LCTs 
in the Bose sample (Table 1, bifaciality in- 
dex), nearly a quarter of which are made on 
large flakes and fall well within the morpho- 
logical range of Acheulean handaxes, picks, 
or knives. 

Bose LCTs represent a target morphology 
rather than a graded continuum with other 
tool forms (35). The number of flake scars, 
which increases over time in the Acheulean 
and is indicative of LCT refinement, is as 
high in the Bose LCT sample as in East 
African Acheulean bifaces of similar age 
(990 to 700 ka) from Olorgesailie, Kenya, 
and Beds III/IV of Olduvai, Tanzania (36). 
On the basis of extensive surface survey, 

there is a biased spatial distribution of unifa- 
cia1 and bifacial LCTs. Acheulean-like forms 
are delimited to the western third of the basin, 
whereas almost entirely unifacial fonns occur 
in the eastern two-thirds (37). The area of 
bifacial LCTs coincides with the largest 
available clasts in the Bose basin, indicating 
that large flakes were made into bifacial 
LCTs where cobbles >20 cm in their maxi- 
mum dimension were accessible. 

Bose archeological assemblages therefore 
show evidence of flaking capabilities, strate- 
gies of lithic reduction, and spatial distribu- 
tional patterns that are similar to those of 
the Acheulean. Although the tendency toward 
ovoid form and biconvex cross-sectional 
morphology that is typical of many Acheu- 
lean bifaces is rare in Bose lithic technology, 
prescriptive procedures were apparently ap- 
plied in the selection and reduction of stone, 
as suggested by the concentrated thinning of 
LCT tips to a consistent shape, large-scale 
flaking of rock followed by intensive re- 
touching, and the tendency to produce 
Acheulean-like bifacial fonns on large flakes 
where raw materials of a particular size were 
available. 

Bose stone technology is thus compatible 
with Mode 2 of western EurasiafAfiica just 
before the early-middle Pleistocene bound- 
ary. This finding implies similar technical, 
cultural, and cognitive capabilities on both 
sides of the Movius Line. The flow of popu- 
lation and cultural information across the 
line, however, may not have been extensive. 
The Bose basin is positioned between the 
Loess Plateau and South China Sea, where 
evidence of large environmental oscillation 
during the Quaternary has been documented 
(3842). This location and the presence of 
poorly laterized loess at the top of the T4 
section imply that Bose and South China 
generally were affected by significant Qua- 
ternary fluctuation. This observation implies 
that environmental stability did not reinforce 
the Movius Line throughout the Pleistocene. 

One question is why stone tools are repre- 
sented within a stratigraphically restricted inter- 
val in only one of the basin's fluvial terraces at 
about 803 ka, whereas Acheulean and other 
lithic traditions in western Eurasia and Africa 
span lo5 to lo6 years over numerous strati- 
graphic levels. One explanation is suggested by 
the presence of abundant charcoal and silicified 
wood fragments, detected during excavation 
and laboratory study, in precisely the same 
sediments containing the tektites and stone ar- 
tifacts. On the basis of the co-occurrence of 
these remains, we suggest that the Paleolithic 
artifacts of Bose signal a behavioral adaptation 
to an episode of woody plant burning and wide- 
spread forest destruction initiated by the tektite 
event, which exposed cobble outcrops through- 
out the basin. Our findings indicate that when 
local or incoming populations made use of the 
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Table 1. Lithic artifact data from the Bose basin compared to  Mode II 
(Acheulean) LCT assemblages and Mode I (Oldowan and Developed Oldowan) 
assemblages from Africa. Mean and SD (in parentheses) are given for all 
variables except percent made on flakes. Acheulean assemblages are from 
Olorgesailie Members 1 through 7 and Bed IV of Olduvai. Oldowan assem- 
blages include DK 1-3, FLKNN-3, FLK Zinj, and FLKN-6; Developed Oldowan 

Maximum
Site and 

assemblages include HWKE-4, FLK Deinotherium, MNK Main, FCW Floor, and 
TK Upper (67). Bed IV Olduvai assemblages include PDK-IV, HEB-3, HEB-2a, 
HEB-2b, and WK (33, 62, 63). Olorgesailie data are from (32) and (64). The 
bifaciality index (ratio of the number of flake scars on each face) is calculated 
for LCTs only. nlav, no published data available; nlap, measurement not 
applicable to the sample. 

Percent Flake scar flake scar Bifaciality 
technology 

Bose Unifacial LCTs 
Bifacial LCTs 
Non-LCTs 
All flaked pieces 

Mode II Acheulean 
Olorgesailie LCTs 
Bed IV OLduvai LCTs 

Mode l Oldowan 
Bed I Olduvai All flaked pieces 

Developed Oldowan 
Bed II Olduvai All flaked pieces 

Bifacial LCTs 

stone available in the deforested setting, their 
technology and related behavioral capabilities 
were compatible with those of the western Old 
World. 
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A Global View of Martian 

Surface Compositions from 


MGS-TES 

Joshua L. Bandfield,* Victoria E. Hamilton. Philip R. Christensen 

Thermal Emission Spectrometer (TES) data from the Mars Global Surveyor 
(MCS) are used t o  determine compositions and distributions of martian low- 
albedo regions. Two surface spectral signatures are identified from low-albedo 
regions. Comparisons wi th  spectra of terrestrial rock samples and deconvolu- 
t ion results indicate that the two  compositions are a basaltic composition 
dominated by plagioclase feldspar and clinopyroxene and an andesitic com- 
position dominated by plagioclase feldspar and volcanic glass. The distribution 
of the two  compositions is split roughly along the planetary dichotomy. The 
basaltic composition is confined t o  older surfaces, and the more silicic com- 
position is concentrated in the younger northern plains. 

A major objective of the TES investigation is to 
determine and map the mineralogy of the mar- 
tian surface in order to understand the forma- 
tion and development of Mars. To understand 
present and past conditions on Mars, it is im- 
portant to determine if the surface materials are, 
for example, volcanic, weathering products, or 
chemical precipitates. We demonstrate here that 
martian dark materials are volcanic and that 
they vary significantly across the planet. These 
findings can help lead to an understanding of 
planetary mechanisms such as the development 
of the martian crust, heat loss processes, bulk 
composition, magma differentiation, and source 
materials of the martian soil and dust. 

Previous studies have developed the meth- 
odology for separating the surface and atmo- 
spheric components of the emission of Mars 
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(1,2),allowing detailed analysis and interpre- 
tation of the surface composition (3, 4 )  and 
atmospheric properties (5).The spectra of the 
martian surface match the spectra of rock 
samples and linear mixtures of minerals mea- 
sured in the laboratory; there is no evidence 
for unusual particle size or environmental ef- 
fects (3, 4 ) .  Atmospherically corrected TES 
spectra of the dark surface region of Terra 
Cimmeria can be matched to basalt, with a 
derived composition dominated by plagio- 
clase and with lesser clinopyroxene. Analysis 
of TES spectra has also revealed the presence 
of a unique area of hematite mineralization in 
the equatorial Sinus Meridiani region (4 ) .  
Here we present a global map of the petrolog- 
ic and mineralogic composition of martian 
volcanic materials with the TES data acquired 
since the beginning of the MGS mapping 
mission (6). 

Surface spectra were retrieved with surface 
atmosphere separation techniques (1-3). Two 
independent methods have been developed that 
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provide nearly identical results (7) for the va- 
riety of surfaces presented here. The analysis 
presented here was performed with the decon- 
volution algorithm (2). Several surface loca- 
tions were also selected for analysis with the 
radiative transfer algorithm (2)  to check the 
consistency of the results derived from the de- 
convolution algorithm. 

Atmospherically corrected surface emis- 
sivity spectra were analyzed with two meth- 
odologies. First, a direct comparison of mar- 
tian surface spectra with laboratory thermal 
emission spectra of terrestrial rock samples 
can be used to provide a good estimate of 
bulk composition (3 ,  8-11). However, this 
technique may be limited because surfaces may 
be mixtures of minerals that do not represent a 
single rock composition. In addition, it is difi- 
cult to obtain precise compositions with this 
technique because the number of possible real- 
istic surface compositions is far greater than 
any rock library can account for. 

A second, more quantitative technique is 
linear deconvolution of surface emissivity spec- 
tra using a spectral library of minerals (11-14). 
This technique takes advantage of the fact that a 
thermal infrared spectrum of a mixed mineral 
surface may be closely modeled with a linear 
combination of mineral spectra multiplied by 
their areal concentrations (11-16). Linear de- 
convolution of laboratory spectra may be used 
to retrieve the modal mineralogies of a variety 
of rock samples to within 5 to 10 volume % 
(5-10 vol. %) of optical modes (11, 14). The 
uncertainty for the martian TES spectra is some- 
what higher than these laboratory studies (- 10-
15 vol. %) (3, 14)  because the martian surface 
spectra were acquired at lower spectral resolu- 
tion, have a more limited wavelength range, and 
have additional uncertainties due to the removal 
of atmospheric effects. 

Spectra of mineral mixtures, such as rocks 
or TES observations, are often difficult to 
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