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4(P23L) mutant protein was diffusely cytoplas­
mic, suggests that CED-4 is recruited to nuclear 
membranes, possibly by interacting with anoth­
er protein or protein complex. The identification 
of such a CED-4 receptor should help us under­
stand the mechanism of action of CED-4 in the 
execution of programmed cell death. 
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Stem cells, pairs, and chains are collectively 
called undifferentiated spermatogonia, which 
subsequently become differentiating spermato­
gonia, spermatocytes, spermatids, and sperm 
cells. All types of undifferentiated spermato­
gonia are morphologically and molecularly 
alike, but they can be distinguished by the 
absence or presence of synchronized mitotic 
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and apoptotic figures (2) and by their spatial 
relation to differentiating sperm cells. Sertoli 
cells, the somatic cells of the seminiferous 
tubules, are paracrine regulators of spermat-
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ogenesis (3). These cells probably regulate 
the maintenance of the stem cell pool and 
sperm differentiation, but the molecular mech-
anisms by which this occurs have remained 
unresolved. Here we show that the dosage of 
GDNF, normally secretedby Sertolicells (4), 
regulates the fate and lineage determination 
of undifferentiated spermatogonia. 

GDNF, a dis.tant member of the trans-
forming growth factor-p family, promotes 
survival and differentiation of several types 
of neurons in the nervous system (5, 6) and 
regulates ureteric branching in the embryonic 
kidney (7,8). The signalingreceptor complex 
of GDNF includes Ret receptor tyrosine ki-
nase and GDNF family receptor-cul (GFR-
a l )  (9).GDNF-, GFR-a1- and Ret-null mice 
exhibit similar phenotypes and die during the 
first postnatal day (7, 10). Their testicular 
morphology at this stage is normal. GDNF 

Fig. I.Segmental testicular 
degeneration in GDNF+'-
mice at 5 (A and B) and 8 (C 
through E) weeks of age. (A) 
About every second tubule is 

,i. atrophic. (B) High magnifica-
tion from a degeneratingseg-
ment. Spermatocytes and+= sperrnatids are visible, but 
sperrnatogonia have disap-
peared. The peripheral rim 

consists mostly of Sertoli cells. (C) Mislocation of spermatids (arrows) in an atrophic tubule. The 
reduction of spermatid number is not statistically significant (18%) as compared to that in wild-type 
testes. (D) BrdU incorporation in a wild-type control and (E) reducedincorporationin a CDNFf'- testis. 
Scale bar in (E), 40 pm; bar indicates 200 pm in (A), 100 pm in (B), 60 pm in (C), and 40 p m  in (D). 

promotes Sertoli cell proliferation in vitro 
(11). To approach the in vivo function of 
GDNF in spermatogenesis, we analyzed gene-
targeted mice with either decreased or in-
creased GDNF expression. 

Although most GDNF+" mice survived 
to adulthood and were fertile, histological 
analysis of their testes showed that spermat-
ogenesiswas disturbed (12) (Fig. 1, A and B). 
However, sperm cells were observed in the 
epididymal ducts and in well-preserved seg-
ments (13). In the degeneratingtubules, sper-
matids were in an abnormal position and 
Sertoli cells engulfid some of them (Fig. 1C). 
In older G D N P I - mice, the depletion of the 
germ cells often resulted in Sertoli cell-only 
seminiferous tubules without spermatogonia 
(13) and the cell proliferation rate was re-
duced (Fig. 1, D and E), reflecting the deple-
tion of spermatogonia. 

We then overexpressed GDNF in trans-
genic mice under the testis-specific (13) hu-
man translation elongation factor-la (EF-la) 
promoter (14-16). Four independent trans-
genic founders were analyzed: two males, 
C10 and C12, and two females, S6 and E19, 
with transgene copy numbers of 10, 3, 20, 
and 4, respectively. The male founders were 
infertile, and further analysis of the trans-
genic phenotype was done with offspring of 
the female founders. Their litters developed 
normally to adulthood and did not show de-
fects in other organs than the testis. The 
testicular weights were 41 and 66% less than 
in controls at 4 and 8 weeks of age, respec-
tively (n = 40 animals in both groups). All 
transgenic males were infertile. In 5 months 
of continuous breeding (3 males) and a short-
term breeding test of 2 weeks (20 males) with 
FVB females, the transgenic males produced 
more than 200 vaginal plugs, but sired no 
pups. Strain dependence of the infertile phe-
notype was excluded by crossbreeding the 
transgenic FVB females to NMRI mouse 
strain. 

Testicular morphology of GDNF-overex-
pressing mice was normal at birth. After 2 to 
3 weeks, a chimeric histological pattern was 
observed. The tubular cross sections not only 
showed normal spermatogenesisbut also dis-
played large cell clusters (Fig. 2, A and B). 
Because these cells in the clusters did not 
show much nuclear heterochromatin and did 
express a spermatogonial marker, EE2 (17), 
they could be morphologically classified as 

(B), (D), and (E) show EEZ type A s~ermatogOnia(I3, The 
labeling of spermatogonia, gradually degenerated after puberty, resulting 
(A) Wild-type testis and (B) in tubular atrophy, and Sertoli cells phagocy-
transgenic testis with clus- tosed the dead cells (Fig. 2C). At 10weeks of 
ters of s~ermatogonia (ar- age, only remnants of clusters were seen, but 
row) at weeks Of age. ('1 a rim of spermatogonia at the periphery of
High magnification of a live 

cell preparation (18) from a transgenic seminiferous tubule with dying cells that resemble type A atrophic seminiferous remained (Fig. 
spermatogonia (arrow) and are engulfed by Sertoli cells. n, Sertoli cell nucleus. Histology of (D) 2, D and E). No sperm was ~ b ~ ~ r v e din 
normal 10-week-old testis and (E) advanced atrophy with Leydig cell hyperplasia (asterisk) in seminiferous tubules or the epididymis (13). 
transgenic testis. Scale bar in (C), 10 pm; bar indicates 100 p m  in (A), (B), (D), and (E). The levels of GDNF and its receptors 
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were determined by Northern blotting in nor- 
mal and GDNF-overexpressing testes (Fig. 3, 
A through F) (I  6). Although GDNF, Ret, and 
GFR-a1 were down-regulated in wild-type 
testes after the first postnatal weeks, their 
expression stayed high into adulthood in 
transgenic testes. Also, the endogenous GDNF 
mRNA levels (16) were elevated (Fig. 3G), 
reflecting altered cell type ratios. Immuno- 
precipitation with Western blotting (Fig. 3H) 
confirmed the high transgene expression. In 
situ hybridization for GDNF and its receptors 
is shown in Fig. 4 (19). Ret and GFR-a1 
expression by a spermatogonial subset indi- 
cates that this group represents the GDNF- 
responsive cells. To further specify the target 
cell type of GDNF, ~ ~ ~ ~ - o v e r e x ~ r e s s i n ~  
testes were analyzed with markers for differ- 
entiating spermatogonia and Sertoli cells. The 
clusters did not express c-Kit, a marker for 
differentiating spermatogonia (12, 20). The 
distribution of GATA-1-positive nuclei (a 
DNA binding protein in Sertoli cells) (21) 
was unaltered, suggesting that Sertoli cell 
proliferation is not regulated in vivo by 
GDNF (13). 

The cell cycle kinetics were analyzed by 
bromodeoxyuridiie (BrdU) incorporation and 
apoptosis labeling (22). After the first post- 
natal week, the normal segmental nature of 
cell proliferation was disrupted in transgenic 
mice, but the overall proliferation rate of 
spermatogonia was not enhanced (Fig. 5, A 
through C). Thus, a differentiation block rath- 
er, than hyperproliferation probably causes 
the accumulation of spermatogonia. Apopto- 
sis was increased from the second postnatal 
week with a peak at 4 weeks of age (Fig. 5, D 
and E). 

The interconnected spermatogonia enter 
apoptosis and undergo mitoses synchronous- 
ly (2). The survey of 366 mitotic figures in 
spermatogonial clusters of 3-week-old trans- 
genic mice (n = 3 mice) revealed predomi- 
nantly single figures: 252 singles, 41 pairs, 
six groups of four, and one group of eight. 
Accordingly, only single or small groups of 
apoptotic cells were seen. The predominance 
of single mitotic figures and the morpholog- 
ical and molecular characteristics of the cells 
suggest that the clusters were mainly com- 
posed of stem cells. However, the changed 
microenvironment could have caused a pre- 
mature disruption of the syncytial spermato- 
gonial colonies, and the cluster cells could 
therefore also represent abnormal undifferen- 
tiated spermatogonia at other stages. 

A lack of proper cell contacts between the 
clusters of spermatogonia and Sertoli cells 
could explain the disturbed spermatogonial 
differentiation. However, cytoplasmic exten- 
sions of Sertoli cells (Fig. 5H) often protrud- 
ed into the clusters (23). The expression of 
Ret and EE2 by the clusters hrther suggests 
that the differentiation defect is not caused by 

unspecific distortion of the translational ma- 
chinery by the transgene expression. This 
was also excluded by expressing neurturin, 
another GDNF family member expressed by 
Sertoli cells (24) in the presence of the EF-la 
promoter. These mice showed a different 
phenotype. They formed no clusters, had nor- 
mal fertility, and had only a transient delay of 
spermatogenesis (25). 

When rats or mice are fed a vitamin A- 
deficient diet or when the retinoic acid recep- 
tor* gene is disrupted, differentiation of 
spermatogonia is blocked (26). We challenged 
the transgenic spermatogonia with daily in- 
jections of all-trans retinol (27). Instead of 

undergoing differentiation, the clusters un- 
derwent apoptosis (Fig. 5, F and G). Thus, the 
overactivation of Ret or the abnormal local- 
ization of transgenic spermatogonia renders 
them incapable of proper response to a dif- 
ferentiation signal. 

Testicular tumors developed regularly in 
older GDNF-overexpressing mice. The trans- 
genic spermatogonia remained dormant after 
the clustering period, but invariably started to 
spread into the interstitium and formed non- 
metastatic tumors after a year of age. Of 12 
old mice, 10 had bilateral and 2 had unilateral 
tumors. 

The atrophy in adult GDNF-overexpress- 

W O 1 2 3 4 5 6 8 1 . 3  0 1 2 3 4 5 1 3 w e e k S  
kb B E ~d, 

adin ac(in 

w e b 1  2 3 4 5 8 1 3  1 2 3 4 5 13 weeks 

r: 

Fig. 3. Northern blotting of 
GDNF and its receptors in wild- 
type and transgenic testes. GDNF 
(A), Ret (B), and GFR-a7 (C) 
mRNA levels had been strongly 
down-regulated since the second 
postnatal week. In the transgenic 
testis, the levels of GDNF (D), 
Ret (E), and GFR-a7 (F) remain 
high to adulthood. (G) Also, the 
endogenous GDNF transcripts in 
transgenic (TG) versus wild-type 
( WT) testes are elevated (1- and 
4.5-kb transcripts, respectively). 
(H) Western blotting of immu- 
noprecipitated GDNF at 3 and 6 
weeks of age. In WT testes, the 
GDNF protein is not detectable 
at these stages. Twenty-five nano- 
grams of human GDNF protein 
serve as a control (right lane). 

Fig. 4. In situ hybridization for 
GDNF and its receptors in wild- 
type (left) and transgenic (right) 
testes. (A) At 1 week of age, 
GDNF is high1 expressed (red). 
The inset in &) depicts GDNF 
protein expression by Sertoli 
cells in a newborn mouse. At 2 
weeks of age, Ret (B) and GFR-a7 
(C) are expressed in a subset of 
spermatogonia. They have a 
"starry sky" distribution. The 
spermatogonial clusters in an 
adult transgenic mouse continu- 
ously express the GDNF trans- 
gene (D), Ret (E), and GFR-a7 (F). 
There are peripheral rows of Ret- 
and GFR-1x7-positive cells out- 
side the clusters. The inset in (E) 
shows Ret protein. Scale bar, 33 
P"'. 

www.sciencemag.org SCIENCE VOL 287 25 FEBRUARY 2000 



R E P O R T S  

ing testes might be caused by several mech- 
anisms. First, the clusters block fluid flow 
in seminiferous tubules, which triggers tes- 
ticular degeneration (28). Thus, obstruction 
might be the most important reason for the 
atrophy because spermatogenesis was partial- 
ly restored after dissolution of the clusters by 
retinol treatment. Second, the blood-testis 
barrier, developing around three weeks of age 
(29), might prevent the protrusion of undif- 
ferentiated spermatogonia into the lumen. 
This would force them to spread horizontally 
under Sertoli cells. Indeed, sheets of Ret- 
positive spermatogonia were found in atro- 
phic testes, suggesting that this subpopulation 
had overgrown and replaced Ret-negative 
spermatogonia. 

Thus, GDNF dosage regulates the dif- 
ferentiation of undifferentiated spermato- 
gonia. At a low GDNF level, spermatogo- 

Fig. 5. Cell cycle kinetics of the spermato- 
gonia in GDNF-overexpressing mice, their 
contacts with Sertoli cells, and their re- 
sponse to all-trans retinol. (A) In a 3-week- 
old wild-type testis, S-phase cells are only 
seen in the periphery of seminiferous tu- 
bules. Absent labeling of some tubules 
(stars) shows the segmental distribution 
of cell proliferation during normal sper- 
matogenesis. (B) In a 3-week-old trans- 
genic testis, numerous BrdU-labeled cells 
(arrow) are abnormally distributed in the 
luminal area of the tubules. (C) The aver- 
age proliferation indices of spermatogonia 
in 100 trans-sections of wild-type (squares) 
and transgenic (triangles) tubules (BrdU- 
labeled nuclei per 100 spermategonia) are 
not significantly different (0.28 2 0.12 
versus 0.25 2 0.31, respectively; n = 
19645 cells), but the peak proliferation 
index is higher in wild-type than in trans- 
genic mice (Student's t test, P < 0.001). 
(D and E) In situ Labeling for apoptosis in a 
4-week-old wild-type (D) and transgenic 
(E) testis. Apoptotic cells inside (arrow) 
and,outside the clusters are nine times 
more frequent in the transgenic than in 
the wild-type testes (the average ? SD of 
apoptotic cells in tubular transsection is 
0.47 2 0.16 in wild-type and 4.22 ? 0.23 
in transgenic testes). (F) Transgenic mouse 
testis without retinol treatment at the age 
of 4 weeks. (G) In its retinol-treated litter- 
mate, the clusters have almost disap- 
peared after 8 days of all-trans retinol 
injections, and spermatogenesis has been 
partially recovered. The stem cells would 
have needed at least 22 days to reach the 
most advanced stages seen here (37). 
Thus, the differentiating cells are obvious- 
ly not derived from the spermatogonial 
clusters but from the disturbed spermato- 
genesis outside the clusters (see Fig. IB). 
Inset, in situ labeled apoptotic spermato- 
gonia in a transgenic mouse injected for 3 
days with retinol. (H) Electron micrograph 
depicts cell contacts (arrows) between a 
spermatogonium (asterisk) and a Sertoli 
cell within a cluster of spermatogonia in a 
3-week-old transgenic mouse. Scale bar in (I 
60 1J.m in (F) and (G). 

nia favor differentiation, and at a high lev- 
el, they favor self-renewal (13). The dis- 
turbed spermatogenesis in the GDNF+'- 
mice closely mimics the morphology of 
many human cases of impaired spermato- 
genesis and can be used as a new model for 
male infertility (30). Molecules activating 
the Ret signaling cascade may provide us 
with means to restore reduced spermatogo- 
nia pools in infertile men. Although the 
tumors in older GDNF-overexpressing 
mice remain uncharacterized, their regular 
development in GDNF-overexpressing 
mice suggests that GDNF is involved in the 
pathogenesis of germ line tumors. Further- 
more, the effects on spermatogenesis 
should be taken into consideration when 
lead molecules activating the GDNF signal- 
ing cascade are designed for use in therapy 
for neurodegenerative disorders. 

nwild-type 
transgenic 

E - 0'6 

The number of section 

4). 0.4 Fm; bar indicates 100 Fm in (A) through (E), and 
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General Acid-Base Catalysis in 
the Mechanism of a Hepatitis 

Delta Virus Ribozyme 
Shu-ichi Nakano, Durga M. Chadalavada, Philip C. Bevilacqua* 

Many protein enzymes use general acid-base catalysis as a way t o  increase 
reaction rates. The amino acid histidine is optimized for this function because 
it has a pK, (where Ka is the acid dissociation constant) near physiological pH. 
The RNA enzyme (ribozyme) from hepatitis delta virus catalyzes self-cleavage 
of a phosphodiester bond. Reactivity-pH profiles in  monovalent or divalent 
cations, as well as distance t o  the leaving-group oxygen, implicate cytosine 75 
(C75) of the ribozyrne as the general acid and ribozyme-bound hydrated metal 
hydroxide as the general base in  the self-cleavage reaction. Moreover, C75 has 
a pKa perturbed t o  neutrality, making it "histidine-like." Anticooperative in- 
teraction is observed between protonated C75 and a metal ion, which serves 
t o  modulate the pK, of C75. General acid-base catalysis expands the catalytic 
repertoire of RNA and may provide improved rate acceleration. 

Eight different catalytic RNAs (ribozymes) 
occur in nature, and all catalyze phosphoryl 
transfer reactions (1, 2). The rate of phospho- 
ryl transfer can be accelerated by numerous 
factors, including stabilization of unfavorable 
charge development in the transition state, 
positioning of atoms, and ground-state desta- 
bilization (3).Developing negative charges in 
the transition state of the Tetrakymena ri-
bozyme are stabilized by direct interaction 
with metal ions (4). Because the nucleophile 
must be deprotonated and the leaving group 
protonated, proton transfer must occur dur- 
ing phosphoryl transfer. Thus, developing 
negative and positive charges could, in 
principle, be stabilized by partial proton 
transfer in the transition state by general 
acid-base catalysis (2, 5, 6 ) .  Optimal pro- 
ton transfer in enzymes occurs with an 
atom having a pKa near neutrality (5, 6).  
Thus, histidine often plays an important role in 
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proton transfer in protein enzymes (5, 6). 
In RNA, adenine and cytosine have the 

potential for protonation of their ring nitro- 
gens N1 and N3, respectively, but the pK,s 
for the free nucleosides are relatively low at 
3.5 and 4.2 (7).  Perturbation of adenine and 
cytosine pK,s to near neutrality has been 
observed in several different RNAs (8-lo), 
which suggests that effective acid-base ca- 
talysis may be possible in RNA. Imidazole 
rescue experiments have shown that proton 
transfer is possible in RNA catalysis and 
occurs in the hepatitis delta virus (HDV) 
ribozyme cleavage mechanism (10). The 
work described herein involves further 
characterization of the mechanism for this 
ribozyme. 

HDV is a human pathogen that uses a 
ribozyme in its replication cycle (11). The 
-85-nucleotide HDV ribozyme is found as 
closely related genomic and antigenomic ver- 
sions (11, I2), and it belongs to a class of 
small ribozymes that produce cleavage prod- 
ucts with 5'-hydroxyl and 2',3'-cyclic phos- 
phate termini (1) (Figs. 1 and 2). 

To probe the catalytic mechanism of the 
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HDV ribozyme, we examined the pH depen- 
dence for self-cleavage of the precursor 
genomic ribozyme, with a wild-type cytosine 
at position 75 (C75). The logarithm of the 
observed rate constant increases with pH be- 
tween 4.5 and 6 with a slope of -1 (Fig. 3A). 
In the pH range 7 to 9, the observed rate 
constant is pH insensitive, providing an ob- 
served pK, of 6.1 in 10 mM Mg2+ (Fig. 3A). 
The slope of 1 at low pH is consistent with an 
increase in the concentration of the functional 
unprotonated form of one general base with 
pH and a constant amount of the functional 
protonated form of a general acid. The slope 
of zero from pH 7 to pH 9 indicates that 
either the concentrations of the functional 
species do not change with pH, or the con- 
centration of one species increases while the 
other decreases by the same amount. To test the 
nature of the rate-limiting step, we conducted 
a solvent deuterium isotope experiment (Fig. 
3A). A substantial D,O solvent isotope effect 
[= k,, (H,O)lk,,,(D,O)] was observed 
throughout the pKa range 5 to 8, which suggests 
that the observed pK, of 6.1 reflects a real 
ionization rather than a change in the rate- 
limiting step. 

The crystal structure of the self-cleaved 
form of the genomic HDV ribozyme has been 
solved (13) and reveals that N3 of cytosine 75 
(C75) is located only 2.7 A from the 5'- 
oxygen of G1 (Figs. 2 and 3B). Moreover, 
biochemical data suggest that the precursor, 
transition state, and self-cleaved forms of the 
ribozyme have similar structures (13). Be- 
cause the 5'-oxygen of G1 is the leaving- 
group oxygen in the self-cleavage reaction, 
C75 could serve as the general acid during 
self-cleavage (Fig. 2). To test this hypothesis, 
we replaced C75 with adenine (C75A) or 
uracil (C75U). The C75U mutant did not 
result in detectable self-cleavage (14). In 
contrast, C75A did react, albeit more slowIy 
(by a factor of 270), resulting in an observed 
pKa of 5.7 and a ApKa of -0.4 compared 
with C75 (Fig. 3A). A pKa shift of -0.4 is 
consistent with the unperturbed ApKa for N1 
of adenosine and N3 of cytidine of -0.65 
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