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Translocation of C. elegans 

CED-4 to Nuclear Membranes 


During Programmed Cell Death 

Fangli Chen,'*t Bradley M. Hersh,'* Barbara Conradt,'$ 

Zheng Zhou,' Dieter Riemer,' Yosef Cr~enbaum,~ 
H. Robert Horvitzl 

The Caenorhabditis elegans Bcl-2-like protein CED-9 prevents programmed cell 
death by antagonizing the Apaf-I-like cell-death activator CED-4. Endogenous 
CED-9 and CED-4 proteins localized to mitochondria in wild-type embryos, in 
which most cells survive. By contrast, in embryos in which cells had been 
induced to die, CED-4 assumed a perinuclear localization. CED-4 translocation 
induced by the cell-death activator ECL-1 was blocked by a gain-of-function 
mutation in ced-9 but was not dependent on ced-3 function, suggesting that 
CED-4 translocation precedes caspase activation and the execution phase of 
programmed cell death. Thus, a change in the subcellular localization of CED-4 
may drive programmed cell death. 

Programmed cell death is important in regulat- 
ing cell number and cell connections and for 
sculpting tissues during metazoan development 
( I ) .When misregulated, programmed cell death 
can contribute to various disease states, includ- 
ing cancer, autoimmune disease, and neurode- 
generative disease (2). Many of the central 
components of the cell death machinery have 
been identified through genetic studies of the 
nematode Caenorhabditis elegans (3). Loss-of-
function mutations in any of the genes egl-I, 
ced-3, or ced-4 or a gain-of-function mutation 
in the gene ced-9 block programmed cell death. 

Loss-of-function mutations in ced-9 cause ste- 
rility and maternal-effect lethality as a conse- 
quence of ectopic cell death and can be sup- 
pressed by ced-3 and ced-4 mutations but not 
by egl-1 mutations, suggesting that ced-9 acts 
upstream of ced-3 and ced-4 and downstream 
of egl-I. CED-9 is a member of the Bcl-2 
family of cell-death regulators (4 ) ,  and the 
EGL-1 protein contains a BH3 (Bcl-2 homolo- 
gy 3) domain and can physically interact with 
CED-9 (5).ced-3 encodes a caspase (6 ) ,while 
CED-4 is similar to mammalian Apaf-1, an 
activator of caspases (7). CED-4 can bind 
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CED-9 and CED-3 in vitro, in yeast, and in 
mammalian cells (4, and the interaction of 
CED-9 and EGL-1 may influence CED-4 ac- 
tivity (9). These observations suggest a 
model (3) in which CED-3 causes pro- 
grammed cell death; CED-4 activates CED- 
3; CED-4 is directly inhibited by CED-9 
(10); and EGL-1 initiates cell death by 
directly inhibiting CED-9. To determine 
when and where these cell-death proteins 
act, we have explored physical interactions 
among them using immunohistochemistry. 

To study the expression and subcellular lo- 
calization of CED-9 and CED-4 in C. elegans, 
we generated polyclonal antibodies that recog- 
nize these proteins (11). Affinity-purified anti- 
bodies to CED-9 (anti-CED-9) specifically rec- 
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ognized bacterially expressed CED-9 and a 32- 
kD protein corresponding to CED-9 on a West- 
em blot of wild-type (WT) (N2) embryo 
lysates; this protein was absent in ced-9(n2812) 
embryo lysates (12, 13). The ced-9(n2812) al- 
lele contains an amber stop mutation at codon 
46 and is probably a molecular and genetic null 
allele (4). Fixed embryos stained with anti- 
CED-9 revealed that CED-9 was present in all 
cells during C. elegans embryogenesis (Fig. 
IA), beginning as early as the two-cell stage. 
CED-9 levels peaked at approximately the 200- 
cell stage and slowly diminished, becoming 
undetectable around the time of hatching. 
CED-9 protein was not observed in larvae or 
adults. On the subcellular level, CED-9 exhib- 
ited a weblike, cytoplasmic staining pattern. 
CED-9 staining was highly similar to the stain- 
ing of Mitotracker Red (14), which specifically 
labels mitochondria (Fig. 1). 

Anti-CED-4 recognized bacterially ex- 
pressed CED-4 and detected a 63-kD protein 
on Western blots of N2 embryo lysates; this 
protein was absent in ced-4(n1162) embryo 
lysates (12). The ced-4(n1162) allele contains 
an ochre stop mutation at codon 79 and is 
probably a molecular and genetic null allele 
(15). Embryos stained with anti-CED-4 dis- 
played a weblike pattern in all cells (Fig. ID), 
very similar to the patterns of CED-9 and 

Mitotracker I Mitotracker 

Fig. 1. CED-9 and CED-4 are localized to mitochondria in W T  embryos. (A) CED-9 expression in a 
W T  embryo of - 30 to 50 cells. (6) Mitotracker Red localization in the same embryo as in (A). (C) 
Merged image of (A) and (B). (D) CED-4 expression in a WT embryo of -200 cells. (E) Mitotracker 
Red localization in embryo in (D). (F) Merged image of (D) and (E). 

Mitotracker Red. CED-4 staining appeared 
at approximately the 100-cell stage, before 
the first programmed cell death, persisted 
through embryogenesis, and like CED-9, was 
not detected in larvae and adults. Of the 13 1 
developmental cell deaths in C. elegans her- 
maphrodites, 113 occur during embryogene- 
sis and the remainder occur during larval 
development. Although we have not detected 
CED-4 or CED-9 in larvae, ced-4 and ced-9 
mutants are defective in larval programmed 
cell deaths, suggesting that the CED-4 and 
CED-9 proteins act postembryonically. 

We examined whether the expression and 
localization of CED-9 and CED-4 were af- 
fected by mutations that disrupt programmed 
cell death. Loss-of-function mutations in ced- 
3, ced-4, and egl-I, genes required for pro- 
grammed cell death, did not affect either the 
expression pattern or mitochondria1 localiza- 
tion of CED-9 protein. The expression and 
localization of CED-4 protein was also unaf- 
fected by loss-of-function mutations in ced-3 
and egl-I. To determine the expression pat- 
tern and localization of CED-4 in the ab- 
sence of functional CED-9 protein, we 
stained ced-9(n2812); ced-3(n 71 7) double- 
mutant embryos with anti-CED-4. Because 
ced-9(n2812) embryos derived from ho- 
mozygous ced-9(n2812) hermaphrodites 
arrested before the appearance of visibly 
recognizable corpses and before CED-4 ex- 
pression, these embryos could not be stud- 
ied directly for CED-4 localization. Be- 
cause ced-3(n 71 7) did not affect the local- 
ization of CED-4 but does suppress the 
lethality of ced-9(n2812), we instead used 
this double mutant to analyze CED-4 in the 
absence of CED-9. In ced-9(n2812); ced- 
3(n 71 7) embryos, CED-4 was not localized 
to mitochondria but rather was associated 
with nuclear membranes (Fig. 2, A to C), as 
visualized by double staining embryos with 
anti-CED-4 and antibodies directed against 
C. elegans lamin (16). We obtained similar 
results using the ced-9 loss-of-function al- 
leles n1950 n2161 or n1950 n2077 in com- 
bination with ced-3(n717). Mitotracker 
Red staining was not altered in ced- 
9(n2812); ced-3(n717) embryos, indicating 
that the shift in CED-4 localization repre- 
sents a movement of CED-4 protein rather 
than a change in the morphology andlor 
localization of mitochondria (1 7). 

To confirm this localization of CED-4 
protein to nuclear membranes in ced-9(lf) 
embryos, we performed subcellular fraction- 
ations of embryo lysates (18). Both CED-9 
and CED-4 were present predominantly in 
the organelle and membrane fraction, which 
includes the mitochondria [for example, 
(19)], in WT embryos (Fig. 3). By contrast 
CED-4 was present almost exclusively in the 
nuclear fraction in ced-9(n2812); ced- 
3(n717) embryos. Thus, in WT embryos, in 
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which most cells survive, both CED-9 and 
CED-4 appeared to be predominantly mito- 
chondrial. However, in ced-9(n2812); ced- 
3(n 71 7 )  embryos, in which ectopic cell death 
was presumably initiated but blocked by the 
ced-3 mutation, CED-4 was redistributed 
from mitochondria to nuclei. Thus, CED-9 
protein is necessary to localize CED-4 to 
mitochondria. 

These data suggest that stimuli that induce 
programmed cell death would induce a redis- 
tribution of CED-4 to nuclear membranes and 
that it might be possible to block pro- 
grammed cell death by blocking CED-4 re- 
localization. We tested these predictions by 
ectopically inducing programmed cell death 
in embryos. 

The binding of EGL-1 protein to CED-9 
may directly inhibit CED-9 function and trigger 
programmed cell death by releasing CED-4 
from a CED-9-CED-4 complex (5, 9). To de- 
termine whether EGL-1 protein can affect the 
localization of CED-9 or CED-4, we expressed 
EGG1 protein globally from an egl-1 cDNA 
under the control of two C. elegans heat-shock 
promoters (P,,egl-1) (20) in the presence of 
the ced-l(e1735) mutation, which reduces cell- 
corpse engulfment and allows the quantification 
of cells that have undergone programmed cell 
death (21). Animals carrying heat-shock vec- 
tors without the egl-1 cDNA insert developed 
normally, but transgenic animals carrying 
Phspegl-I arrested during embryogenesis after 
heat-shock treatment. The few hatched L1 lar- 
vae contained many more cell corpses than 
vector-only animals, indicating extensive pro- 
grammed cell death (Table 1). Localization of 
CED-9 was unaffected in these animals. By 
contrast, overexpressed EGL- 1 triggered the 
translocation of CED-4 from mitochondria to 
nuclei (Fig. 4A). 

We next introduced the extrachromosomal 
array carrying Phspegl-1 into two strains in 
which programmed cell death is blocked. The 
ced-3(n717) mutation suppressed programmed 
cell death induced by EGL-1 overexpression 
(Table 1) but did not affect CED-4 translocation 
from mitochondria to nuclear membrane (22). 
This observation supports the idea that the re- 
lease of CED-4 is not merely a consequence 
of cell death but rather precedes the execution 
of programmed cell death. Like ced-3(n717), 
the ced-9(n1950) gain-of-function mutation 
blocked the ectopic death induced by egl-1 
overexpression (Table 1). However, unlike 
ced-3(n717), ced-9(n1950) also blocked the 
translocation of CED-4 (Fig. 4B), suggesting 
that this mutant form of CED-9 either is 
unable to interact with EGL-1 or is unable to 
release CED-4. We tested the interaction of 
CED-9(G169E) protein, which is encoded by 
the ced-9(n1950) mutation, with EGL-1 pro- 
tein both in vitro and in yeast two-hybrid 
experiments and were unable to detect any 
difference between the interactions of the 
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CED-9 and CED-9(G169E) proteins with the 
EGL-1 protein (23). It is possible that these 
in vitro studies failed to reveal a defect in 
the interaction between EGL-1 and CED-9 
sufficient to produce the gain-of-function 
phenotype observed in vivo in ced- 
9(n1950) animals. Alternatively, in ced- 
9(n1950) animals, EGL-1 may form a ter- 
nary complex with CED-9 and CED-4 
without causing the release of CED-4. We 
also generated an egl-1 heat-shock con- 

struct bearing the egl-l(n3082) mutation, 
which results in a truncated EGL- 1 protein, 
a disruption of CED-9 binding, and a strong 
cell-death defective phenotype. Transgenic 
animals carrying this construct had signif- 
icantly fewer corpses than animals bearing 
the WT egl-1 construct (Table 1). CED-4 
localization was predominantly mitochondrial, 
but in occasional animals a few cells displayed 
nuclear CED-4 localization. Thus, overexpres- 
sion of this egl-l(n3082) gene resulted in a 

C 

CEO-4 N2 C E W  

Fig. 2. CED-9 is required for the localization of CED-4 to mitochondria. (A) CED-4 expression in a 
ced-g(n2812); ced-3(n717) loss-of-function (If) embryo of -150 cells. (B) Lamin localization in the 
same embryo as in (A). (C) Merged image of (A) and (B). (D) CED-4 expression in WT embryo of 
-200 cells. (E) Lamin staining of embryo in (D). (F) Merged image of (D) and (E). 

Fig. 3. CED-4 fractionates Manbnnrr 
primarily with mem- md 
branes and organelles Cytord 

nuclear fraction marker. 
HSP90, C. elegans heat- 
shock protein, a cytosolic marker. 
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weak partial induction of both programmed cell 
death and CED-4 translocation. 

Overexpression of egl-1 was sufficient to 
trigger both cell death and CED-4 transloca- 
tion. Is egl-1 necessary for the CED-4 trans- 
location that occurs in the absence of CED-9? 
We stained ced-9(n2812); ced-3(n717); egl- 
l(n1084 n3082) embryos and determined that 
CED-4 protein was nuclear, just as in the 
ced-9(n2812); ced-3(n717) embryos. Thus, 
in the absence of CED-9 protein, EGL-1 is 
not required to release CED-4 from mito- 
chondria to nuclei, indicating that EGL-1 
promotes CED-4 translocation by antagoniz- 
ing the activity of CED-9. 

Thus, we observed that CED-4 was mito- 
chondrial in living cells and nuclear in cells that 
had initiated programmed cell death, so that the 
subcellular localization of CED-4 appeared to 
correlate with the cell-death status of a cell. We 
next studied the localization of CED-4 in six 
ced-4 missense mutants: n2860, n2879, n3040, 
n3043, n3100, and n3141. In five of the six 
mutants, CED-4 was mitochondrially localized 
in the presence of CED-9 and was associated 
with the nuclear membrane in the absence of 
CED-9, as in the WT. In ced-4(n3040) embry- 
os, however, CED-4 displayed a diffuse, cyto- 
plasmic localization both in the presence and in 
the absence of CED-9 (Fig. 4C), distinct from 
the weblike mitochondrial pattern of WT CED- 

4. ced-4(n3040), which causes a proline-to- 
leucine substitution at amino acid 23 (P23L) in 
a region that lacks any known protein motifs, 
results in as strong a cell-death defect as does 
ced-4(n1162), which contains an early ochre 
nonsense mutation. This P23L substitution re- 
duces the interaction between CED-9 and 
CED-4 by about 75% in the yeast two-hybrid 
assay (24). The failure of CEDd(P23L) to 
associate with either mitochondria or nuclear 
membranes suggests that CED-4 is actively 
recruited not only to mitochondria (presumably 
through interaction with CED-9) but also to 
the nucleus. Alternatively, CED-4 may first 
have to interact with CED-9 to be comvetent 
to translocate to nuclear membranes. That 
WT CED-4 associated with nuclear mem- 
branes in the absence of CED-9 argues 
against this latter model. 

CED-9 localization to mitochondria in C. 
elegans embryos is not surprising, given that 
the mammalian CED-9-like cell-death protec- 
tors Bcl-2 and Bcl-X, both localize to mito- 
chondria (25). Although Bcl-X, and the CED- 
4-like protein Apaf-1 have been reported to 
physically interact (26), Moriishi et al. (27) 
recently reported that they could find no inter- 
action between Apaf-1 and any known anti- 
apoptotic Bcl-2 family member. Furthermore, 
there is no evidence for the localization of 
Apaf-1 to mitochondria. Apaf-1 was isolated as 

Table 1. ECL-1 induces ectopic cell death that can be suppressed by the ced-9 gain-of-function mutation 
n1950. Corpses were counted in the heads of transgenic L1 animals subjected to heat shock (20) and 
represent the mean ? SD and range observed (n, number of animals). The egl-l(n1084 n3082) allele is 
referred to as egl-l(lf), whereas egl-l(n3082) indicates a transgene engineered to contain only the n3082 
5-bp deletion and not the n1084 lesion in the egl-I 3' regulatory region. 

Genotype Array Number of Range n corpses 

ced- I ;  egl- I (lf) Vector alone 0.4 2 0.6 0 -2 15 
ced- I ;  egl-1 (lf) Ph,egl- 1 45.4 2 18.7 16-75 16 
ced- 1; ced-3; egl- 1 (lf) phSpegl- 1 0.5 ? 0.7 0 -2 15 
ced- 1; ced-g(n1950); egl-I (lf) phspegl- 1 1.3? 1.3 0-4 15 
ced-1; egl-l(1f) P,,egl- I (n3082) 4.4 + 3.2 0-13 20 

Fig. 4. Overexpression of ECL-1 induces CED-4 translocation from mitochondria to nuclear 
membranes in ced-9(+) embryos but not in ced-9(nl950) embryos. (A) CED-4 Localization after 
heat shock in a ced-9(+) embryo carrying P ,egl-7. (B) CED-4 Localization after heat shock in a 
ced-g(n1950) embryo carrying P,,,egl-I. (c! CED-4 localization in a ced-4(n3040) embryo was 
diffusely cytoplasmic. 

a cytosolic activator of caspases (7), and over- 
expressed CED-4 is cytosolic in mammalian 
cells (8). Therefore, the mitochondrial localiza- 
tion of CED-4 is unexpected. 

Our data suggest a model in which the 
activity of CED-4 is regulated by its subcel- 
lular localization. Specifically, we propose 
that in living cells, CED-9 prevents CED-4 
activity by sequestering CED-4 to mitochon- 
dria. In cells triggered to undergo pro- 
grammed cell death, EGL- 1 binding to CED- 
9, possibly as a consequence of increased 
egl-1 transcription (28), causes CED-4 re- 
lease from CED-9 and allows the transloca- 
tion of CED-4 to the nuclear region. There 
CED-4 activates the CED-3 procaspase, 
thereby causing programmed cell death. 

How might we reconcile our findings with 
the report of Moriishi et al. (27) describing 
their failure to detect interactions between 
Apaf-1 and Bcl-2 family members? One possi- 
bility is that CED-9 has anti-apoptotic activity 
independent of its interaction with CED-4 and 
that this activity corresponds to the anti-apop- 
totic activity of Bcl-2 and Bcl-X,. For example, 
CED-9 can directly inhibit the CED-3 caspase 
(29), although it has not been shown that this 
inhibition acts physiologically and the region of 
CED-9 involved is not present in Bcl-2 or 
Bcl-X,. Furthermore, at least some CED-4 is 
localized to the nuclear membrane at the per- 
missive temperature in ced-9(n1653ts) embryos 
(22), suggesting that this mutant CED-9 protein 
can protect against cell death even when CED-4 
is localized to the nucleus; however, we suspect 
that the level of nuclear CED-4 in these embry- 
os is lower than in cells that are dying, so this 
level may simply be insufficient to trigger pro- 
grammed cell death. 

The death-promoting proteins Bax and 
BAD, which like EGL-1 contain BH3 domains, 
translocate to mitochondria and bind anti-apop- 
totic Bcl-2 family members in response to ap- 
optotic signals (30). Whether and how this 
translocation promotes cell death is unknown. 
Our results suggest that Bax and BAD may act 
to release Avaf-1 or another CED-4-like vro- 
tein, allowing it to activate caspase processing. 
Some caspase precursors, specifically pro- 
caspases-2, and -3, are present in mitochondria 
and upon activation translocate to nuclei (31). It 
is possible that this movement of caspases in- 
volves the translocation of a complex that in- 
cludes a CED-4-like protein. By analogy, the 
translocation of a CED-4-CED-3 complex 
from mitochondria to the nuclear envelope 
could provide access for the active caspase to 
both the nucleus and the cytosol, thereby ful- 
filling the roles of the multiple, differentially 
localized mammalian caspases. 

The release of CED-4 from mitochondria 
resulted in the translocation of CED-4 to another 
distinct subcellular compartment rather than in 
the dispersal of CED-4 throughout the cell. This 
result, combined with our finding that the CED- 
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4(P23L) mutant protein was diffusely cytoplas­
mic, suggests that CED-4 is recruited to nuclear 
membranes, possibly by interacting with anoth­
er protein or protein complex. The identification 
of such a CED-4 receptor should help us under­
stand the mechanism of action of CED-4 in the 
execution of programmed cell death. 
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Stem cells, pairs, and chains are collectively 
called undifferentiated spermatogonia, which 
subsequently become differentiating spermato­
gonia, spermatocytes, spermatids, and sperm 
cells. All types of undifferentiated spermato­
gonia are morphologically and molecularly 
alike, but they can be distinguished by the 
absence or presence of synchronized mitotic 
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The molecular control of self-renewal and differentiation of stem cells has 
remained enigmatic. Transgenic loss-of-function and overexpression models 
now show that the dosage of glial cell line-derived neurotrophic factor (GDNF), 
produced by Sertoli cells, regulates cell fate decisions of undifferentiated sper-
matogonial cells that include the stem cells for spermatogenesis. Gene-targeted 
mice with one GD/VF-null allele show depletion of stem cell reserves, whereas 
mice overexpressing GDNF show accumulation of undifferentiated spermato­
gonia. They are unable to respond properly to differentiation signals and un­
dergo apoptosis upon retinoic acid treatment. Nonmetastatic testicular tumors 
are regularly formed in older GDNF-overexpressing mice. Thus, GDNF contrib­
utes to paracrine regulation of spermatogonial self-renewal and differentiation. 
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