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the x and y directions of the network of dots, 
solitons can be propagated along chains that 
turn comers. There is, in principle, no physical 
problem in splitting a soliton into two channels, 
and so fan-out of signals should also be possi- 
ble. Further simulations show that NOT func- 
tions, concatenated gates, and crossing chains 
are also possible [see (9) for electronic QCA 
implementations]. The fact that they operate at 
room temperature and are fabricated from a size 
of dot that could be manufactured cornmercial- 
ly makes them ideal candidates for integration 
into microelectronic hardware. Input dots could 
be programmed locally by passing an electrical 
current through a conducting track underneath 
the dot, as in magnetic random access memory 
(10, 11). Signal output could be obtained from 
single dots in a complex network by using one 
of the recentlv discovered marmetoelectronic 
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effects (10). 
Power gain is a very important issue in all 

QCA architectures. Electronic QCA circum- 
vents this by temporarily removing the ener- 
gy barriers between logic states during 
switching, to allow near-adiabatic operation 
(12). In principle, MQCA solitons propagate 
without loss and so should be able to mediate 
a logic switch without any dissipation; in 
practice, small fluctuations in the shape of the 
dots will lead to anisotropy fluctuations (the 
size of dots reported here gain -10 Oe of 
anisotropy field for each percent of ellipticity 
in shape), which will cause the soliton to 
dissipate energy as it propagates. In our MQCA 
architecture, this energy is provided by the 
externally applied oscillating magnetic field. 
Power gain to overcome losses and to enable 
fan-out of signals can thus be achieved. 

The need to minimize anisotropy fluctua- 
tions places a required accuracy on the circu- 
larity of the dots of better than ?2%. We can 
infer from the signal level of Fig. 2C that this 
accuracy has been achieved in at least 19 of 
the 20 networks that we fabricated using only 
conventional electron beam lithography. Fur- 
thermore, this fabrication requirement is one 
order of magnitude less stringent than that of 
electronic QCA (13). 

MQCA has enormous potential to meet 
the future requirements of microelectronics 
for digital processing. If we take a single 
MQCA dot to be analogous to a transistor 
(comparing different paradigms is difficult, 
but this allows for an order of magnitude 
comparison), then the unoptimized device we 
report here has an integration density of 5500 
million cmp2, compared with 6.6 million 
cmp2 for today's CMOS technology (14). 
The magnetostatic interaction energy be-
tween two of the dots reported here is 200 
kBT (kB is Boltzmann's constant and T is 
room temperature). An energy of at least 40 
k,T is required if thermally induced data 
errors are to be kept below one per year. 
MQCA should therefore be very stable 
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Rippling Instability of a 

Collapsing Bubble 


Rava da Silveira,' Sahraoui Chaieb,' L. MahadevanZ 

When a bubble of air rises to the top of a highly viscous liquid, it forms a 
dome-shaped protuberance on the free surface. Unlike a soap bubble, it bursts 
so slowly as to collapse under its own weight simultaneously, and folds into a 
wavy structure. This rippling effect occurs for both elastic and viscous sheets, 
and a theory for its onset is formulated. The growth of the corrugation is 
governed by the competition between gravitational and bending (shearing) 
forces and is exhibited for a range of densities, stiffnesses (viscosities), and 
sizes-a result that arises less from dynamics than from geometry, suggesting 
a wide validity. A quantitative expression for the number of ripples is presented, 
together with experimental results that support the theoretical predictions. 

Every day, nature surprises us with structures 
and patterns of such beauty as to fill the 
scientist with wonder and the artist with 
envy. Here, we address an instability that 
turns a hemispherical, smooth, liquid bubble 
into a striking wrinkled structure, first ob- 
served by Debregeas, de Gennes, and Bro- 
chard-Wyart (1). In their experiment, 0.1 to 
10 cm3 of air injected into a highly viscous 
liquid (with viscosity q - lo3 Paes) rises to 
the free surface, imprisoned in a hemispher- 
ical bubble of thickness t - 1 to 10 km. If the 
bubble is punctured at its apex by a needle, 
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surface tension drives the rapid expansion of 
a circular opening. After about 10 to 30 ms, 
the retraction velocity saturates to a constant, 
owing to the high viscous resistance. In the 
meantime, the air flow through the hole equil- 
ibrates the pressure difference, allowing the 
bubble to collapse under its own weight. As it 
deflates, an instability appears: The fluid 
sheet folds into a wavy structure, with radial 
ripples that break the original axisyrnmetry. 
In the absence of a detailed theory, a scaling 
estimate has been proposed (I)  for the num- 
ber of ripples: n* - (pgR3/K)1i2, where p. is 
the mass of the film per unit area, g is the 
gravitational acceleration, R is the radius of 
the hole, and K is an effective bending rigid- 
ity of the sheet (which was assumed to be 
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elastic during the early stages of the rippling). 
The rippling results from the competition 

among compression, bending, and gravity. 
Each fluid element tends to fall under its own 
weight but experiences a viscous resistance 
from its neighborhood. If the bubble were to 
collapse in a uniform, symmetric way, it 
would occupy a progressively reduced area, 
leading to an in-plane compression, which 
would require forces that far exceed the scale 
set by gravity. Instead, the film deforms in a 
nearly inextensional fashion by undergoing 
pure bending. Equivalently,for a given (grav-
itational) force, the relative time scale asso-
ciated with stretchingis much larger than that 
for bending, and the surface therefore corru-
gates over short times before eventually re-
laxing into a uniform, thicker membrane. 

This instability is reminiscent of buckling 
phenomena(2),originally studied in the context 
of elastic rods but also occurring in the creeping 
flows of viscous liquid filaments [a striking 
everyday example being the coiling of a stream 
of honey when it reaches a piece of toast (3,4)]. 
For an elastic rod, buckling occurs at the long-
est possible wavelength in order to minimize 
the bending energy. In the bubble problem, 
however, gravity plays a distinctive role in de-
termining the configuration. For a given ampli-
tude, bending still favors large-scale deforma-
tions, whereas gravitational energy is mini-
mized for an almost flat sheet with as many tiny 
ripples as possible; the optimal wavelength re-
sults from a compromisebetween the two. Such 
an argument, however, does not l l l y  charao 
terize the effect. Unlike the above examples, 
here the system under consideration is a curved 
two-dimensional sheet, and the associated ge-
ometry constrains the rippling both qualitative-
ly and quantitatively (see below). 

The instability occurs in both elastic (solid) 
and viscous (liquid) films. The elastic case wr-
responds to a shell with a hole of radius R, 
allowed to collapse under its own weight. In the 
viscous case, an additional complication arises 

because the radius of the hole changes during 
the rippling. After a short initial transient, the 
hole grows steadily at a rate v - ulq resulting 
from the balance of surface tension ( a  - 20 
mN/m) and viscous stress. It thus takes a time 
T -qtlu for the opening radius to increaseby t. 
During this time, the liquid acquires a velocity 
V-gr due to gravity, larger than v by a factor 
Vlv - lo7. Even if the liquid is viscoelastic, so 
that the retraction velocity is enhanced by a 
factor Rlt (- 10 to lo4) (1, 5), the hole radius 
remains essentiallyconstantwhile the instability 
occurs (Fig. 1). We may therefore treat the hole 
radius R as a given parameter in the theory (6). 

Although the bubble has the geometry of a 
sphere before collapsing, it is quite flattened 
by the time the ripples appear (Fig. 1B). For 
simplicity, we consider the unperturbed con-
figurationto be a shallow cone of slope a << 
1, described by its height above the surface, 

where r is the cylindrical radial coordinate 
and ro is the radius of the base. Any defor-
mation of h introduced by the rippling may be 
written, without loss of generality, as 

where 0 is the azimuthal angle. The per-
turbation Fa represents a uniform (n inde-
pendent) flatteningaccompanyingthe growth 
of ripples of amplitude Sp,(n, and a crucial 
step consists in understanding their form and 
interdependence. 

In the case of a thin elastic (viscous) sheet, 
the two primary modes of deformation are in-
plane stretching (she-iring) and out-of-plane 
bending. A generic deformation of an elastic 
cone (made of a material with Young modulus 
Y), of amplitude 6 on a scale t ,  requires stretch-

Fig. 1. Stroboscopic 
Images of a collapsing 
liauid bubble of size 
ro = 1 cm and thick-
ness t .= 100 pm. The 
silicone oil has viscos-
ity 7 = lo3 Pa-s, sur-
face tension a = 21 
mNlm, and mass den-
sity 0.98 g/cm3. (A) 
The bubble 30 ms af-
ter the film is punc-
tured bv a sham nee-

LC-

dle. A ietracting hole 
(radius R = 1.4mm) is visible, but there are no ripples yet. (B) After another 
30 ms, the bubble loses its axisymmetric shape. The radius of the hole 
remains essentially constant, at R = 1.6 mm, while the ripples grow. The 
inset in (B) displays a schematic side view of the essentially conical deflating 
bubble a t  the onset of the instability,with the important quantities involved 
in the phenomenon. The extreme shallowness allows for a perturbative 
treatment in the slope a of the cone. 

ing forces (per unit surface) of order YtlJt2 but 
much smaller stretching forces (per unit sur-
face) of order Y?</t4 (7), SO that for a given 
external drive (gravity in our case), inexten-
sional deformations are greatly preferred (8).In 
the case of a highly viscous sheet, forces arise 
from velocity gradients, thus introducing a dy-
namical element into the problem. However, 
their dependence on t and t (essentially due to 
the variation of the strain across the film) is 
similar, so that inextensional deformations are 
again largely favored if t << t = rdn*. (This 
wndition is satisfied if the selected number of 
ripples n* is small relative to lo3, as in the 
present case; see below.) Equivalently, for a 
given loading, the time scale corresponding to 
bending is smaller than that for stretching by a 
factor (tie)' (9, 10). Thus, at the onset of the 
instability, perturbations of the cone must pre-
serve its metric. This requirement translates into 
the constraints (11) 

where 6P,(') and Sp,'"' are constants, and 

In the following, we elucidate the elastic 
(solid) case before extending our treatment to 
the viscous (liquid) case. The energy hnc-
tional of a perturbed elastic cone is 

E[h + Sh] = d(surface) X (gravitationalI,, 
potential energy + bending potential energy) 

= dr  d l  + [V(h + Sh)12 

X [pg(h + Sh) + (K/2)(V2Sh)2] ( 5 )  
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where K = Yf'/12(1 - v2) is the rigidity and 
v is the Poisson ratio. Only bending elastic 
energy appears in E, because we have con- 
fined ourselves to the class of inextensible 
deformations. 

If the elastic cone is attached to the plane 
on which it rests, so that 6h(r = r,) = 0, Eq. 
3 yields 6P,('>' = -6P,('>r,. On substituting 
Eqs. 2 through 4 into Eq. 5 we then obtain, to 
lowest order in the perturbation, 

where cp(x), +(x), f(x), and g(xq) are defined 

R E P O R T S  

in (12). y-'" = ( ~ X l p g ) " ~  is an intrinsic 
length scale arising from the competition be- 
tween gravity and bending elasticity. 

Each mode contributes an amount 6En to 
the change in energy, and rippling occurs if 
6En < 0 for some integer. In general, 6En < 
0 for a range of different n's; the most neg- 
ative variation corresponds to the maximally 
growing perturbation and thus sets the wave- 
length of the instability. The formulation also 
yields a "threshold condition" cp(rdR) < 
yR3+(rdR) for the occurrence of rippling. 
This condition involves the three independent 
quantities y, r,, and R, and may be trandated 
into three corresponding statements: (i) Rip- 
pling is suppressed if y < yc(ro,R) = Rp3cpl+, 
i.e., if the cone is too light or too rigid. (ii) 
Similarly, no rippling occurs if the hole, or 

. <*  . . . 
with our proposed 301 ' ' ' ' I ' I 
mechanism for the 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 

formation of the cor- r, (cm) 

Fig. 2. (A) Plot of the 
number of ripples n* as loo 
a function of the bub- 
ble radius r,, comparing 
the experimental mea- 90 
sures (points) with the 
theoretical predictions 
(solid lines). These data 80 
were gathered using sil- 
icone oil of viscosity 
q = 600 Pa-s and bub- * 70 
bles of thickness t - e 
30 k m  The errors in 
the measurement of r, 60 
arise from meniscus ef- 
fects, which are more 
important in smaller 50 
bubbles. The bursting 
time elapsed up to rip- 
pling is measured to be 40 
of order one to  five 
times ( t l ~ ) " ~ ,  consistent 

rugation. For each ex- 
perimental realization, the ratio r,lR was measured 
at the onset of the instability, and the correspond- 
ing dependence of R on r was used t o  obtain a 
theoretical curve n* = n*Ir,). The green line dis- 
plays the prediction for an elastic sheet attached to  
the plane on which it rests. Because the liquid 
cannot be clamped, the boundary conditions at the 
base must be relaxed. This leads to a vanishing of 
the unprimed modes (Eq. 3) that are unfavorable in 
terms of both gravitational and viscous forces; the 
fastest growing primed modes lead to  the behavior 
represented by the purple line. The latter is plotted 
here for a slope a - 3" (- 0.05 rad) of the cone, 
which is consistent with our perturbative treatment 
and in agreement with direct observation. The blue 
line represents the best f i t  of the scaling form n* - 

I - I . , . , . I ' I . I '  

- A i-@i- 

- 

- 

- 

- 

( p g ~ ~ i ~ ) " ~  (I), where R is chosen as ihe  relevant 
length scale. If R is replaced by r,, the above expres- 
sion for n* may be closely fitted (up to  an overall multiplicative factor) to  our predicted curve, 
hence the size of the bubble is the dominant length scale within the present experimental range 
and conditions. This is consistent with the relaxed boundary conditions, which allow the ripples to  
be appreciable, close to  the outer edge of the bubble (see also Fig. 18). In this way, the ripples trade 
a bulk gain in gravitational and bending stresses against a cost in stretching in a thin rim close to  
the outer edge, The increased thickness of the Liquid film close to the base further emphasizes this 
effect, as it reduces the difference in magnitude between a typical stretching and a typical bending 
stress. (B) Top view of the fully developed ripples, from which n*  is measured. 

equivalently the cone, is too small, r, < 
roc(y,R). Azimuthal continuity requires the 
wav(1ength of the deformation to be at most 
of order r,, resulting in a forbidding bending 
cost if r, becomes small relative to the intrin- 
sic (energetically determined) scale y1I3 .  (iii) 
The threshold also depends, quite unexpect- 
edly, on the ratio r,lR. The dependence of the 
symmetric (n = 0) mode on the radial coor- 
dinate r is different from that of the rippling 
(n # 0) modes, so that the high elastic cost 
can no longer be justified by gravitational 
gain if the hole is reduced beyond a critical 
size. Minimizing 6E in Eq. 6 yields the se- 
lected number of ripples as 

where Int x is the integer closest to x. This 
relation improves on the estimate in (I) 
(where the authors consider a short-time elas- 
tic behavior) and establishes its domain of 
validity. 

For an elastic (solid) sheet, the rippling phe- 
nomenon is of an essentially static nature; upon 
increasing, say, the mass of the sheet, the equi- 
librium configuration is shifted ftom symmetric 
to rippled. Approaching the problem h m  a 
dynamical perspective, by considering the elas- 
tic forces and torques rather than the co rn  
sponding energies, results in an evolution equa- 
tion 1~pP(r,,R)d2(6Pn(l~)Idt~ = -8ElSP,'" for 
each mode. Here P is a polynomial function 
independent of n, so that the energetically op- 
timal mode, with number n*, is indeed the 
fastest growing one. In the case of a viscous 
liquid, the effect is intrinsically dynamical: 
Bending occurs only over short times, whereas 
the equilibrium configuration is ultimately 
reached by a slow thickening. Nevertheless, the 
motion of a viscous film satisfies a formulation 
close to that of an elastic sheet, as can be shown 
by integrating the Stokes equation through the 
thickness (10, 13). Indeed, it is easy to see that 
bending results from a torque $/[4(1- I?)] X 
d(curvature)ldt analogous to an elastic torque 
K X (curvature), so that a highly viscous film 
may be described by an effective bending inod- 
ulus K, = $137 (v = 112 for an incompressible 
medium), where r is a time scale associated 
with the falling velocity. Thus, all the conclu- 
sions of the stability analysis for the elastic 
cone, and in particular the expression for the 
number of ripples (Eq. 7), can be transposed to 
the case of the bubble e x m t  for a certain time 
scale related to the gravityfinduced velocity of 
the fluid. Comparing the nascent ripples' am- 
plitude with the film thickness yields an esti- 
mate of this time scale as (tlg)ln (14). 

To check our results against experiment, we 
visualized the bursting of silicone oil bubbles. 
Once the bubble is punctured with a sharp 
needle, its evolution is followed using a high- 
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speed camera capable of recording up to 1000 
frames per second' The video is then 
analyzed to determine the radius r, of the bub- 
ble. the hole size R at which the riuules are first 

A A 


observed, and the number of ripples n*. Be-
cause the hole expands very fast at first, R is 
much larger than R, by the time the bubble 
begins to collapse. To compare the experiments 
with the theory, in which R enters as a param- 
eter, we measured the latter at the onset of the 
instability for each given size of the bubble. The 
quantitative measurements are compared with 
the theoretical predictions for the dependence 
of n* on the bubble size in Fig. 2. On a more 
qualitative level, the experiments show a sup- 
pression of the instability for small bubbles, in 
agreement with the threshold conditions above. 

We conclude with a discussion of possible 
refinements of the theory and their relation to 
the geometric nature of the problem. A more 
complete theory would incorporate a (flattened) 
hemisphere as the initial condition, rather than a 
cone. Also, because of the progressive drainage 
of the liquid, the thickness t acquires a depen- 
dence on r (and time). This in turn implies 
nonuniform rigidity K(r) and mass p(r), leading 
to functi0ns.f; g, cp, 4, and P of a more com- 
ulicated form. On a more fundamental level, 
all these aspects should be addressed in 
terms of the coupled hydrodynamics of the 
slow viscous (liquid) flow and the rapid air 
flow (13). Yet the strong geometrical con- 
straints involved in the problem are sugges- 
tive of the robustness of the results. 

The question we have answered is akin to 
that of applying a curved surface onto a flat one 
in the most economical way, a problem that has 
taxed cartographers for many centuries and lies 
at the birth of differential geometry. It is also 
somewhat of an inverse counterpart to the prob- 
lem of fitting a flat sheet to a three-dimensional 
landscape, which has been studied in various 
contexts (15-1 7) and is an issue that still vexes 
fashion designers. The relevance of the geomet- 
rical constraints is manifest, for example, in the 
strong dependence of the rippling on the size of 
the opening, which is closely related to a well- 
known theorem by Gauss (la), Jellett (19), and 
others, according to which (loosely put) a closed 
surface cannot be bent without being stretched, 
whereas an open surface can be bent inexten- 
sionally. Similarly, we find that a smaller hole 
implies a relatively stiffer bubble and hampers 
the rippling. Although the precise forms of the 
hct ions cp and 4 arise from the physical con- 
straints and dynamics imposed by the forces and 
various boundary conhtions, the essence is in 
the geometry. 
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Control of Thickness and 

Orientation of Solution-Grown 


Silicon Nanowires 
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Bulk quantities of defect-free silicon (Si) nanowires with nearly uniform di- 
ameters ranging from 40 to 50 angstroms were grown to a length of several 
micrometers with a supercritical fluid solution-phase approach. Alkanethiol- 
coated gold nanocrystals (25 angstroms in diameter) were used as uniform 
seeds to direct one-dimensional Si crystallization in a solvent heated and 
pressurized above its critical point. The orientation of the Si nanowires produced 
with this method could be controlled with reaction pressure. Visible photo- 
luminescence due to quantum confinement effects was observed, as were 
discrete optical transitions in the ultraviolet-visible absorbance spectra. 

One-dimensional quantum wires are ex-
pected to play a vital role as both intercon- 
nects and functional components in future 
mesoscopic electronic and optical devices 
and also to provide an opportunity to test 
fundamental quantum mechanical concepts 
(1, 2). As the wire diameter approaches the 
carrier de Broglie wavelength, quantum 
confinement effects shift band gap energies 
and, in Si, induce visible photolumines-
cence (3). The electronic and optical prop- 

Department of Chemical Engineering and Texas 
Materials Institute, University of Texas, Austin, TX 
78712, USA. 

*To whom correspondence should be addressed. E-
mail: korgel@mail.che.utexas.edu 
tPresent address: Department of Chemistry, Univer- 
sity College Cork, Ireland. 

erties of the nanowires strongly depend on 
size; therefore, size control and tunability 
are key to the success of any method of 
synthesizing quantum wires. Dimensional- 
ity also affects the material properties of 
nanowires. The absence of translational 
symmetry in Si could profoundly affect the 
electronic properties: Bulk Si is an indirect 
semiconductor with a band gap of 1.1 eV, 
whereas linear polysilane chains exhibit a 
3.89-eV direct gap (4). The lattice orienta- 
tion in a wire can provide a tuning param- 
eter, unavailable in quantum dots, to adjust 
material properties to suit particular appli- 
cations. In carbon nanotubes, for example, 
the bonding geometry and orientation pro- 
foundly affect the electronic structure and 
can lead to either metallic or insulating 
behavior (5). Calculations for Si nanowires 
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