
26 broth-derived compensatory mutations. 
In general, most of the compensatory mu- 
tations in bacteria grown in mice provided 
only partial recovery of fitness, explaining 
the preponderance of drug-sensitive re- 
vertants. These results are somewhat sur- 
prising because it would be expected that 
the effects of compensatory mutations 
(which correct the defects in protein syn- 
thesis that accompany fusidic acid resis- 
tance) would be independent of the bacte- 
ria's environment. 

The investigators also looked at strepto- 
mycin resistance conferred by a mutation 
in the rpsL gene, which encodes ribosomal 
protein S12. Although broth and mice 
were not treated with streptomycin, the 
adaptation to the costs of streptomycin re- 
sistance was solely through compensatory 
mutations and not through reversion to a 
drug-sensitive phenotype. Intriguingly, in 
broth bacteria all 14 compensatory 
changes were located in the rpsD and rpsE 
genes (extragenic), and not in the rpsL 
gene. In contrast, in all 10 mice studied 
the compensatory mutations were located 
in rpsL (intragenic), within the same 
codon. The original rpsL drug-resistance 
mutation was a substitution (AAA to 
AAC) at  the 42nd codon; two base 
changes converting AAC to AGA (which 
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maintained drug resistance) compensated 
for the effects of this substitution. Unlike 
the case for fusidic acid resistance com- 
pensatory mutations, all of the strepto- 
mycin resistance compensatory mutations 
were accompanied by relatively high bac- 
terial fitness regardless of whether bacteria 
were grown in broth or in mice. This led 
the authors to conclude that the differences 
between mice and broth Salmonella in the 
evolution of streptomycin resistance com- 
pensatory mutations lay in the mutation 
process itself, rather than in selection of 
mutants. An immediate implication of this 
finding is that making predictions about 
the evolution of drug-resistant pathogens 
in vivo requires that at least some experi- 
ments be performed in vivo. Despite the 
benefits of in vitro experiments, we cannot 
yet abandon animal models. 

Regarding the problems of drug resis- 
tance, the results of the Bjorkman study 
cannot be interpreted in an optimistic 
light. In the case of streptomycin, at least, 
all of the adaptations to the cost of resis- 
tance were through amelioration of the 
drug-resistant mutations rather than by re- 
version to drug sensitivity. These findings 
also have implications beyond drug resis- 
tance. They suggest that in vivo the mu- 
tants generated are quite different and the 

Galaxy-Scale Mergers and  
Globular Clusters  

Fran~oisSchweizer 

T
he formation of globular clusters and 
the origin of galaxy shapes, long- 
standing mysteries in astrophysics 

that were long viewed as disjoint, have re- 
cently turned out to be delightfully inter- 
twined. The conceptual breakthrough came 
kom Hubble Space Telescope observations 
of colliding and merging galaxies. 

Globular clusters are densely packed 
aggregates of lo5 to lo7 stars (see the fig- 
ure). How so many stars may have formed 
nearly simultaneously in a sphere only 
-100 light-years in diameter has long 
been a mystery. Our Milky Way Galaxy 
features about 150 of these magnificent 
clusters, all nearly as old as the universe 
itself (10 to 14 billion years). In the 
1960s, astronomers postulated that globu- 
lar clusters in other galaxies were similar- 

The author is at  the Observatories of the Carnegie 
Institution of Washington. 813 Santa Barbara Street, 
Pasadena, CA 91 101-1292, USA. E-mail: schweizer@ 
ociw.edu 

ly old and may have formed even before 
their host galaxies (I). But problems with 
this view soon arose. The chemical abun- 
dances of globulars seemed to correlate u  

with those of their hosts rather than hav- 
ing universally low metallicity, as one 
would expect of primordial objects (2). 
And some nearby galaxies were found to 
possess both old and young globular clus- 
ters. The image of globulars as primordial 
objects thus became tarnished. 

Enter NASA's Hubble Space Telescope, 
among whose early successes were the 
discoveries of dozens of young globular 
clusters in a peculiar elliptical galaxy and 
in two pairs of merging spirals (3). Since 
then, systems of 100 to 1000 freshly mint- 
ed clusters have been found in a variety of 
galaxies, often involved in collisions and 
mergers (see the figure). These observa- 
tions have shed new light on the cluster- 
formation process. 

Globular clusters apparently form from 
massive gas clouds in galaxies that get 

mutation rate is higher than in vitro. Do 
compensatory mutations contribute to both 
acquired resistance in drug-treated hosts 
and the virulence of infecting microbes 
(lo)? Evolution of a bacterial population 
in an infected host may be completely dif- 
ferent from that taking place in a habitat 
outside of the host. For example, the same 
gene may be favored in one habitat and se- 
lected against in the other. The important 
findings of Bjorkrnan and co-workers raise 
a number of questions about why mutation 
and selection, the fundamental elements of 
bacterial evolution, are different in vivo 
and in vitro. Answering those questions 
should keep microbiologists deliciously 
occupied for some time to come. 
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seriously perturbed. Within their rotating 
disks of -10" stars, spiral galaxies like 
the Milky Way or neighboring Androme- 
da contain a layer of dilute atomic hydro- 
gen interspersed with denser clouds of 
molecular hydrogen. The most massive of 
these Hz clouds, called giant molecular 
clouds (GMCs), contain lo5 to lo7 times 
as much gaseous mass as our sun and are 
only marginally stable against gravita- 
tional collapse. The 1000 to 2000 GMCs 
orbiting in a spiral galaxy tend to slowly 
condense and form stars, but things turn 
catastro~hic when two suirals collide and 
merge, causing the pressure of the dilute 
atomic hydrogen to increase rapidly. This 
results  in widespread star bir th and 
shocks the GMCs into prolific star for- 
mation on a globular-cluster scale (4). 
Evidence for this process is that the new- 
born clusters have a mass distribution 
closely resembling that of the GMCs 
themselves (5). 

What does this process have to do with 
the origin of elliptical galaxies? Ever 
since Edwin Hubble arranged galaxies in- 
to a morphological sequence, astronomers 
have wondered why galaxies at one end 
of the sequence are disk-shaped and those 
at the other end are ellipsoidal. Elliptical 
galaxies were long thought to have 
formed shortly after the big bang through 
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the collapse of low-angular momentum 
gas. In 1972, Alar and Juri Toomre hy- 
pothesized that ellipticals may instead 
have formed through major, destructive 
mergers of disk galaxies with nearly equal 
mass. Today, astronomers increasingly 
think of galaxy formation as a sequence 
of hierarchical mergers, but the debate 
continues between those who believe that 
ellipticals assembled fiom gaseous frag- 
ments in the early universe and those who 
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many globulars as the later merger of two 
major galaxies. 

Recent observations show that most gi- 
ant ellipticals feature globular clusters of 
two distinct chemical compositions: bluish 
clusters as metal-poor as those in the 
Milky Way and reddish clusters 10 to 50 
times as metal-rich (9). This bimodality 
implies two major episodes of cluster for- 
mation. The only viable candidate for the 
second episode is a delayed merger of two 

In the debate about the origin of ellipti- 
cal galaxies, the metal-rich globulars 
clearly weigh in on the side of major disk 
mergers, a few of which still occur in the 
nearby universe. However, it remains un- 
clear how the metal-poor globulars fit into 
the picture. They are ubiquitous, existing 
in all but the most dwarfish galaxies, and 
hence seem unlikely to have formed dur- 
ing major mergers. In some rare super- 
giant ellipticals at the centers of rich 
galaxy clusters, metal-poor globulars exist 
in exceptionally large numbers. Do they 
indicate an early galaxy assembly from 
many gas fragments, as envisaged for the 
Milky Way halo (14), or were they accret- 
ed much later from the many surrounding 
dwarf galaxies (IS)? Finally, what univer- 
sal pressure squeezed those early GMCs 
that must have been their progenitors? 
With new large telescopes proliferating, 
answers to these questions should be in 
hand shortly. 
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