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Theoretical studies suggest that primary visual cortex (area V1) uses a sparse 
code to efficiently represent natural scenes. This issue was investigated by 
recording from V1 neurons in awake behaving macaques during both free 
viewing of natural scenes and conditions simulating natural vision. Stimulation 
of the nonclassical receptive field increases the selectivity and sparseness of 
individual V1 neurons, increases the sparseness of the population response 
distribution, and strongly decorrelates the responses of neuron pairs. These 
effects are due to both excitatory and suppressive modulation of the classical 
receptive field by the nonclassicil receptive field and do not depend critically 
on the spatiotemporal structure of the stimuli. During natural vision, the 
classical and nonclassical receptive fields function together to form a sparse 
representation of the visual world. This sparse code may be computationally 
efficient for both early vision and higher visual processing. 

Although area V1 has been studied for over 
40 years, little is known about how V1 en- 
codes complex natural scenes. Theoretical stud- 
ies suggest that natural scenes can be efficient- 
ly represented by a sparse code based on 
filters that resemble neurons found in area V1 
(1, 2). Sparse codes lie along a continuum 
ranging from dense codes, where neurons 
respond to most stimuli, to local codes, where 
neurons give extremely selective responses 
(3). Both of these extremes are inefficient in 
several important respects. Dense codes are 
highly redundant and each neural response 
cames little information, whereas local codes 
require an implausibly large number of neu- 
rons and are ~ o m p u ~ t i o n ~ l l y  intractable. In 
contrast, neurons that are tuned to match the 
sparsely distributed informative components 
of the natural world can produce sparse codes. 
Sparse codes transmit information with min- 
imal redundancy and relatively few spikes. 
Consequently, they are both informationally 
and metabolically more efficient than dense 
codes (4). There have been a few studies of 
sparse coding in inferior temporal visual ar- 
eas (5).We have addressed this issue in area 
v1.  

Recent theoretical studies suggest that 
nonlinear interactions between neurons may 
increase coding sparseness in area V1 (2, 6). 
These interactions are predominantly reflect- 
ed in modulation of classical receptive field 
(CRF) responses by the surrounding nonclas- 
sical receptive field (nCRF) (7). Previous ex- 
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periments have demonstrated that nCRF stim- 
ulation strongly modulates responses during 
free viewing of natural scenes (8).This report 
demonstrates that V1 employs a sparse code 
to represent natural scenes and shows that the 
nCRF plays a crucial role in this process. 

We have addressed this issue by using 
controlled stimuli that simulate natural vi- 
sion. The stimuli were sequences of images 
simulating the spatial and temporal patterns 
occurring in and around the CRF when an 
animal freely views a static natural scene (see 
Fig. 1A). Eye scan paths were generated with 
a statistical model of eye movements made 
during free viewing (9). Image patches were 
extracted from a natural scene along the sim- 
ulated scan path and converted to gray scale 
(10). Each natural vision movie was com-
posed of a series of simulated fixations sep- 
arated by brief simulated saccadic transitions. 

In the experiments described here, we ma- 
nipulated the size of the extracted image 
patches. Patch size varied from one to four 
times the diameter of the CRF. To reduce 
potential boundary artifacts, the outer 10% of 
each image patch was blended smoothly into 
the neutral gray background. Data reported 
here are from 61 well-isolated neurons re- 
corded in area V1 of two awake behaving 
primates (11). 

The sparseness of Vl responses increases 
dramatically with larger natural image patch- 
es that encompass both the CRF and the 
nCRF. This effect is illustrated in Fig. 1, 
which compares responses obtained with 
stimuli confined to the CRF (Fig. 1B) with 
those obtained with stimuli four times the 
diameter of the CRF (Fig. 1C). To quantify 
sparseness we used a nonparametric statistic 
1 )  = 1 - , 2 ) 1 - ( 1 )  
where r, is the response to the ith frame of a 

~ ~ ~ l ,~ ~ , 

movie (averaged across trials) and n is the 
number of movie frames. Values of S near 
0% indicate a dense code, and values near 
100% indicate a sparse code. 

Distributions of S across the sample of 
neurons are shown in Fig. 2 for each stimulus 
size. As stimulus size increases, sparseness 
increases systematically (P  < 0.01) (13). The 
sparseness statistic saturates when stimuli are 
three to four times the size of the CRF, 
consistent with the spatial extent of Vl nCRF 
modulation reported in other studies (7). The 
high sparseness values produced by large 
stimuli suggest that area V1 uses a sparse 
code during natural vision, when stimuli span 
the entire visual field. 

The simulated saccades in our natural vi- 
sion movies often produce large transient re- 
sponses followed by rapid adaptation during 
the course of the fixation. To assess the con- 
tribution of this fine temporal structure to 
sparseness, we recomputed the sparseness 
statistic after averaging all responses within 
each fixation. Absolute sparseness values are 
significantly lower in the fvtation-based anal- 
ysis (P < 0.05), but sparseness still increases 
with increasing nCRF stimulation (14). Thus, 
transient responses and adaptation contribute 
to sparseness but do not account for all of the 
observed nCRF effects. 

We reanalyzed a subset of cells to deter- 
mine whether these sparsening effects were 
due to nCRF suppression, excitation, or both 
(n = 36 cells; stimuli four times the CRF 
diameter). Twenty-nine percent of all the 
frames in this sample are significantly mod- 
ulated (P < 0.05), and the ratio of suppres- 
sion to excitation is about 4.5 to 1. Excitation 
is often concentrated in the onset transients 
that occur after simulated saccades, whereas 
suppression reduces responses across an en- 
tire fixation. Thus, natural nCRF stimulation 
appears to increase sparseness by both en- 
hancing and suppressing specific epochs of 
the response. 

It is unlikely that these results are an 
artifact of incorrect CRF definition (15). We 
defined the CRF as the circular region cir- 
cumscribing all locations where stimuli evoked 
action potentials. Overestimation of CRF siz- 
es would cause inadvertent nCRF stimulation 
by movies confined to the nominal CRF, 
thereby increasing estimates of CRF sparse- 
ness and decreasing the apparent sparsening 
effects of nCRF stimulation. 

We also performed a control experiment 
to ensure that our sparseness estimates did 
not depend on the position of the patch 
boundary, which necessarily varied with patch 
size. The control stimulus consisted of a nat- 
ural vision movie four times the CRF diam- 
eter on which a sharp, white ring was super- 
imposed along the exterior boundary of the 
defined CRF. The ring provided a strong 
artificial edge to enhance the magnitude of 

www.sciencemag.org SCIENCE VOL 287 18 FEBRUARY 2000 1273 

mailto:gallant@socrates.berkeley.edu


R E P O R T S  

any potential edge effects. Ring trials were 
randomly interleaved with non-ring trials. 
The addition of the CRF-diameter ring in- 
creases sparseness by an average of 8% (n = 
12 neurons) relative to that observed without 
the ring. Thus, sparseness estimates for CRF- 
diameter stimuli may be inflated slightly be- 
cause of the presence of the sharp border, 
which suggests that our estimates of the 
sparsening effects of nCRF stimulation prob- 
ably underestimate the true size of this effect. 

The data presented above were acquired 
with controlled stimuli that simulate natural 
vision. During natural free viewing, V1 ac- 
tivity reflects both visual stimulation and 

0 1.5 3.0 4.5 
Time (s) 

Fig. 1. Natural vision movie and representative 
responses. (A) Example of a natural scene used 
as the source image for natural vision movies. 
White line represents simulated visual scan 
path. Image patches centered on the scan path 
were extracted to  form the movie. Small white 
circle gives the CRF size; larger circle is four 
times the CRF diameter. (B) Raster plot of 
action potentials during 20 presentations of a 
movie confined t o  the CRF. The number of 
action potentials during each 13.8-ms movie 
frame is indicated by intensity. Solid line is the 
peri-stimulus time histogram (PSTH). The 
sparseness of these data is 16%, which implies 
a dense distribution of responses across the 
stimulus set. (C) Raster plot of action potentials 
during 20 presentations of a movie with a 
stimulus size four times the CRF diameter. Dark 
line again gives the PSTH. Stimulation of the 
nCRF increases sparseness t o  53%. 

modulation by extraretinal factors such as eye 
movements and attention (16). We examined 
how these extraretinal factors affect sparse- 
ness by comparing responses obtained during 
free viewing of natural scenes (17) to re- 
sponses obtained with natural vision movies 
that re-created the visual stimulation occur- 
ring in the CRF and the surround during the 
same free-viewing episodes (18). Both free- 
viewing and natural vision movie data were 
acquired in 11 V1 neurons (17 separate free- 
viewing episodes). Sparseness values ob- 
tained during free viewing and with natural 
vision movies are highly correlated (r = 
0.91). However, the slope of the regression 
line is 1.2, which suggests that free viewing 
produces a slightly more sparse response than 
do natural vision movies simulating free 
viewing. Given that the movies may not fully 
stimulate the nCRF of some cells, this small 
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Fig. 2. Stimulation of the nCRF increases 
sparseness in single neurons. Effects of stimulus 
size on distribution of the sparseness statistic 
across the sample of cells. Expressed as a per- 
centage, 5 is 0% when a neuron responds 
equally t o  all frames of a movie and 100% 
when a neuron responds t o  only a single frame. 
An increase in S indicates an increase in the 
sparseness of neural coding across the stimulus 
ensemble. Mean sparseness values are 41%. 
52%. 61%, and 62% for stimuli one, two, three, 
and four times the CRF diameter, respectively. 
To quantify sparseness changes in single neu- 
rons we computed the ratio of the observed 
shift in S to  the maximum possible shift as a 
function of nCRF stimulation: Sshirt = (S,,,, - 

ScRF)/(l - S,,,). Average S,,, values are I%%, 
32%, and 36% for stimuli two, three, and four 
times the CRF diameter, respectively. Neurons 
with statistically significant (P < 0.01) shifts 
are black and are stacked on top of those with 
insignificant shifts. 

difference is expected, but we cannot rule out 
the possibility of weak extraretinal effects. 

As a fmal control, we examined sparse- 
ness values obtained with dynamic grating 
sequences (n = 22 neurons) (19) to see if 
sparsening is specific to natural stimuli. To 
compare response sparseness for random 
grating sequences and natural vision movies, 
we computed S for both stimulus types and 
for stimuli one and two times the size of the 
CRF. The sparseness values obtained with 
gratings and natural vision movies are not 
significantly different from each other, which 
suggests that sparseness might be induced by 
oriented energy present in both natural stim- 
uli and grating sequences. 

The sparse coding hypothesis also pre- 
dicts that responses will be sparse when ex- 
amined across the population of neurons in 
V1. To investigate this, we evaluated the 
kurtosis of the response distribution (RD) 
obtained with each stimulus size. The RD is 
the histogram of responses (i.e., action poten- 
tials per movie frame) pooled over all cells 
and all stimuli; it is an estimate of the popu- 
lation response of V1 to an ensemble of 

Separation Angle (deg) 

Fig. 3. Stimulation of the nCRF decorrelates 
responses across the population of neurons in 
area V1. (Upper) Distribution of upper limits of 
the separation angles between pairs of neurons 
tested with similar natural vision movies con- 
fined to  the CRF. Separation angle is inversely 
proportional t o  the similarity of responses be- 
tween randomly selected V1 neurons recorded 
in separate sessions [see text and (21) for de- 
tails]. The mean separation angle is 51°, indi- 
cating substantial response similarity. (Lower) 
Distribution of upper limits of the separation 
angles between neuron pairs obtained with 
natural vision movies four times the CRF diam- 
eter, plotted as in (Upper). The mean of this 
distribution is 67", which is significantly larger 
than the mean of the distribution obtained 
from CRF stimulation alone (P 5 0.001). This 
increase in separation angle reflects decorrela- 
tion across the population of V1 responses. 
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natural images. Kurtosis is the fourth moment 
of this distribution about its mean value. As 
the RD becomes more sparse the proportion 
of moderate responses decreases and the pro- 
portion of both small and large responses 
increases; this is reflected by an increase in 
RD kurtosis. For this reason, theorists have 
used kurtosis as an index of sparseness (2,20, 
21). 

RD kurtosis is 4.1 when stimuli are con- 
fined to the CRF, consistent with theoretical 
studies suggesting that the CRF of Vl neurons 
produces a moderately sparse code (I). How- 
ever, when stimuli are two, three, or four 
times the CRF diameter, kurtosis values in- 
crease significantly to 5.2, 8.7, and 10.2, 
respectively (P 5 0.001). This result further 
confirms that nonlinear nCRF interactions 
increase sparseness and demonstrates that 
this effect occurs across the population of 
cells in V1. 

We also tested whether nCRF stimulation 
increased the independence of responses across 
the population of V1 neurons. We accom- 
plished this by examining the similarity of 
responses between randomly selected pairs of 
neurons presented with nearly identical stim- 
uli during different recording sessions. This 
similarity reflects the distribution of correla- 
tions across the entire population of cells in 
V1. If neurons carry independent informa- 
tion, then randomly selected pairs will be 
weakly correlated, whereas if they carry re- 
dundant information responses will be strongly 
correlated. 

We selected neuron pairs stimulated with 
natural vision movies created from the same 
eye scan path and natural scene (patch sizes 
varied slightly because of differences in CRF 
size). For this analysis the average responses 
across movie frames were treated as a vector 
in a high-dimensional space. We quantified 
response similarity by computing the angle 
between the response vectors of each neuron 

pair (22). Using this metric, cells with similar 
tuning properties have small separation an- 
gles and those with different tuning proper- 
ties have large separation angles. 

Figure 3 shows the distribution of separa- 
tion angles between neuron pairs recorded 
with natural vision movies confined to the 
CRF (Fig. 3, Upper) and four times larger 
than the CRF (Fig. 3, Lower). Stimulation of 
the nCRF significantly increases the separa- 
tion angle between cells (P 5 0.001) (23). 
This is direct evidence that nCRF stimulation 
decorrelates responses between pairs of V1 
neurons and it suggests that one consequence 
of increasing sparseness is increased indepen- 
dence of the responses across cells. 

In a final experiment we investigated the 
nCRF mechanisms that might be responsible 
for sparsening and decorrelation. We accom- 
plished this by mapping the spatial domains 
of the nCRF via reverse correlation. The 
stimulus was a dynamic, compound grating 
sequence consisting of a CRF conditioning 
grating and an nCRF probe extending to two 
times- the CRF size [see Fig. 4A and (24)l. 
The strength, sign, and spatial distribution of 
nCRF domains vary widely across cells (n = 
19 neurons) (see Fig. 4, B to D). Many cells 
have irregular nCRF domains (Fig. 4, B and 
C), although some have a fairly uniform 
structure (Fig. 4D). These patterns are similar 
to those reported recently for area 17 of the 
anesthetized cat (25). The diversity of the 
nCRF structure may be responsible for de- 
correlating the responses of V1 neurons dur- 
ing natural vision. 

Our experiments provide direct experi- 
mental evidence that ;V1 uses a sparse code 
matched to the underlying sparse structure of 
natural scenes. During natural vision, CRF 
and nCRF mechanisms function together as a 
single computational unit. Although CRF re- 
sponses during natural vision are already 
moderately sparse, nCRF stimulation elicits 

nonlinear interactions (2, 6) that dramatically 
increase sparseness and decorrelate responses 
between neurons. Consequently, each neuron 
appears to carry statistically independent in- 
formation. Between the retina and lateral 
geniculate nucleus, the visual system encodes 
information to optimize information trans- 
mission given the limited bandwidth of the 
optic nerve (26). V1 then recodes this infor- 
mation into a sparse representation. One in- 
teresting possibility is that these cells repre- 
sent the independent components of natural 
scenes (20, 27). This would facilitate the 
development of associations between visual 
stimuli in higher visual areas and increase the 
efficiency of pattern recognition (1). 

Sparse coding provides a unifymg b e -  
work for understanding the diverse functions 
claimed for the nCRF: such as contrast gain 
control; the potential representation of extended 
contours, junctions or corners; and figure- 
ground segmentation (28). Our studies demon- 
strate how experiments with natural images can 
complement those with conventional stimuli. 
When used carefully, natural stimuli allow us to 
test our current understanding of sensory sys- 
tems and to interpret known effects in terms of 
their natural function. 
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tial components of the organellar division 
machinery (2). FtsZ is found in nearly all 
prokaryotes, is structurally related to tubulin, 
and accumulates at the furrow between divid­
ing cells, playing a critical role in cell divi­
sion (3). No potential mitochondrial FtsZ has 
been identified in the complete genomes of 
Caenorhabditis elegans or Saccharomyces 
cerevisiae. However, because both mitochon­
dria and chloroplasts arose from endosymbi-
otic bacteria, we anticipated that early in 
evolution, mitochondrial division might also 
have been regulated by FtsZ. Here we de-
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A homolog of the bacterial cell division gene ftsZ was isolated from the alga 
Mallomonas splendens. The nuclear-encoded protein (MsFtsZ-mt) was closely 
related to FtsZs of the a-proteobacteria, possessed a mitochondrial targeting 
signal, and localized in a pattern consistent with a role in mitochondrial division. 
Although FtsZs are known to act in the division of chloroplasts, MsFtsZ-mt 
appears to be a mitochondrial FtsZ and may represent a mitochondrial division 
protein. 
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