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Mutations in SDHD, a 
Mitochondrial Complex II Gene, 

in Hereditary Paraganglioma 
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Hereditary paraganglioma (PGL) is characterized by the development of benign, 

vascularized tumors in the head and neck. The most common tumor site is the 

carotid body (CB), a chemoreceptive organ that senses oxygen levels in the 

blood. Analysis of families carrying the PCL1 gene, described here, revealed 

germ line mutations in the SDHD gene on chromosome 11q23. SDHD encodes 

a mitochondrial respiratory chain protein—the small subunit of cytochrome b 

in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations 

based on the inheritance pattern of PGL, the SDHD gene showed no evidence 

of imprinting. These findings indicate that mitochondria play an important role 

in the pathogenesis of certain tumors and that cybS plays a role in normal CB 

physiology. 

Regulation of oxygen homeostasis is essen

tial for most organisms (1). In mammals, the 

CB, a highly vascular small organ located at 

the bifurcation of the common carotid artery 

in the neck, plays a major role in acute adap

tation to hypoxia (oxygen deprivation) by 

stimulating the cardiopulmonary system (2). 

At the cellular level, this adaptation involves 

activation of a transcription factor, hypoxia-

inducible factor-1 (HIF-1), which subsequently 

leads to a systemic response, including an 

increase in red blood cell mass, stimulation of 

new blood vessel growth, and increased ven

tilation (3). Chronic exposure to hypoxia (e.g., 

as occurs in individuals dwelling at high al

titudes or in those with certain medical con

ditions, such as cyanotic heart and chronic 

lung diseases) induces cellular hyperplasia/ 

anaplasia in the CB (4). 

The CB is also the most common tumor 

site for hereditary paraganglioma (PGL), a 

rare disorder characterized by the develop

ment of mostly benign, highly vascular, slow-

growing tumors in the head and neck. PGL 

tumors display cellular hyperplasia/anaplasia 

(5) in the absence of any hypoxic stimulus. A 
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gene responsible for PGL was mapped to 

chromosome band llq23 (PGL1) and re

mains the only locus confirmed in indepen

dent families (6-8). PGL1 is inherited in an 

autosomal dominant fashion with incomplete 

penetrance when transmitted through fathers, 

whereas no disease phenotype occurs when 

transmitted maternally. This inheritance pat

tern is observed in all confirmed PGL 1 ped

igrees and suggests that there is sex-specific 

epigenetic modification of PGL 1 during ga-

metogenesis, consistent with genomic im

printing (9). This consistent inheritance pat

tern gives PGL a unique place among the 

known human genetic disorders with parent-

of-origin effects (10). Several features of 

PGL tumors, including their benign biologi

cal behavior, limited organ involvement, and 

histopathology, are markedly similar to those 

of chronic hypoxia-stimulated CBs. This led 

us to hypothesize that the genetic defect in 

PGL 1 involves a critical component in the 

oxygen-sensing and -signaling pathway. 

We previously localized PGL 1 to an ap

proximately 1.5-Mb critical interval between 

D11S1986 and D11S1347 (8). BAC and yeast 

artificial chromosome (YAC) contig con

struction and discovery of 16 new simple 

tandem repeat polymorphisms (STRPs) (11) 

enabled us to confine PGL 1 to an approxi

mate 400-kb region (12) flanked by the re

combination breakpoints in families 5(7) and 

12 (8) (Fig. 1). 

Expressed sequence tag (EST) gene con

tent mapping of transcripts (13) revealed a 

high density of transcripts in the 400-kb 

PGL1 critical region and in its close vicinity 

(11). A database search using BLAST with 

one of the ESTs in the critical region, 
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EST229158 (14), identified a completematch 
to a genomic sequence (GenBank accession 
number AB026906) containing the exons of 
the succinate-ubiquinoneoxidoreductasesub-
unit D gene (SDHD).SDHD was previously 
mapped to chromosome band 1lq23 by flu-
orescence in situ hybridization (FISH) (15) 
and its genomic structure has been character-
ized (16). We confirmed the location of SDHD 
in .the PGLI critical region by mapping it 
back to the BAC and YAC contigs, and 
placed it close to the telomeric exclusion 
border. SDHD spans over 19 kb at the 
genomic level, and its translated region con-
sists of four exons of 52, 117, 145; and 163 
base pairs @p). 

SDHD encodes the small subunit (cybS) 
of cytochrome b in succinate-ubiquinoneox-
idoreductase (mitochondrialcomplex 11). Mi-
tochondrial complex I1 is involved in the 
Krebs cycle and in the aerobic electron trans-
port chain (17). It contains four proteins. The 
catalytic core consists of a flavoprotein and 
an iron-sulfur protein; these proteins are an-
chored to the mitochondrial inner membrane 
by the large subunit of cytochrome b (cybL) 
and cybS, which together comprisethe heme-
protein cytochrome b (18). 

Because it has been postulated that the 
mitochondrialelectron transport chain plays a 
critical role in oxygen sensing and signaling 
(19), we evaluatedSDHD as a candidate gene 
for PGL1. To test for germ line mutations in 
SDHD, we initially selected five families 
(families 3, 5, 7, 8, and 11) who showed 
significant linkage to PGLI and demonstrat-

ed distinct disease haplotypes (7, 8). Using 
two affected or carrier individuals from each 
family, we amplified each exon and its splice 
sites by primers designed from the flanking 
intronic sequences and subjected each ampli-
con to single-strand conformational polymor-
phism (SSCP) analysis (20). The SSCP anal-
ysis yielded at least one aberrant conformer 
that cosegregated with the disease chromo-
some in each family. Families 5 and 7 had the 
same aberrant conformer, whereas family 3 
had a distinct aberrant conformer in exon 3. 
Family 11 had an aberrant conformer in exon 
2 and family 8 showed distinct aberrant con-
formers in exons 2 and 3. 

Direct sequencing of each amplicon re-
vealed the sequence alterations responsible 
for the SSCP conformers (Fig. 2). Families 8 
and 11 have nonsense mutations at codon 36 
and codon 38, respectively, creating prema-
ture stop codons. Both stop codons are locat-
ed within the mitochondrial signal peptide 
and presumably block production of mature 
cybS. Family 3 has a missense mutation, 
changing ~ i s ~ ~ ~ - + L e u ~ O ~ .Families 5 and 7 
have a missense mutation that change's 
Pros1-Leus'. We previously described ex-
tensive haplotype sharing among families 12, 
24, and 26 (8). These families also show 
extensive haplotype sharing with family 7 
and, as expected, they all have the same 
missense mutation. Finally, direct sequencing 
of SDHD from individuals who carry the 
Dutch founder mutation (21) revealed a mis-
sense mutation that changes A ~ p ~ ~ - + T y r ~ ~ .  
All of the missense mutations replace amino 

acids conserved in four eukaryotic multicel-
lular organisms (Fig. 3). His102is located in a 
region thought to harbor an axial ligand for 
heme in the Escherichia coli enzyme (22). 
The other two missense mutations result in 
nonconservativeamino acid substitutionsthat 
could dramatically alter cybS conformation. 
None of the mutations has been observed in 
more than 200 normal control chromosomes. 
The mutations cosegregate with the disease 
phenotype in all affected individuals. The 
mutations are also inherited in a Mendelian 
fashion by all at-risk (paternal inheritance) 
and not-at-risk (imprinted maternal inheri-
tance) carrier individuals as identified by 
haplotype analysis. 

We assessed allele-specific expression of 
SDHD to determine whether the lack of ma-
ternal disease transmission in PGLI is caused 
by paternal monoallelic imprinted gene ex-
pression. We detected biallelic expression 
(23) in lymphoblastoid cell lines from affect-
ed and imprinted camer individuals and in 
adult brain tissue as well as in fetal tissues 
from the brain and kidney (Fig. 4). Thus these 
results cannot explain why children of affect-
ed mothers do not develop PGL. Unlike most 
endogenously imprinted genes, SDHD is not 
located in an imprinted genomic domain 
(24). This observation has prompted the hy-
pothesis that PGLI mutations cause ectopic 
imprinting (7, 8). Given the single base pair 
mutations in SDHD and its biallelic expres-
sion in lymphoblastoid cells from affected 
and imprinted individuals, this hypothesis 
seems unlikely. Although the precise mecha-
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nism of the imprinted inheritance pattern in 
PGLI remains to be determined, monoallelic 
expression of SDHD may be confined to the 
CB and other paraganglionic cells, similar to 
the brain-limited imprinting of UBE3A of 
Angelman syndrome (25). 

Tumors from PGLI families often show 
loss of heterozygosity with exclusive loss of 
the normal maternal chromosome at 1 lq23 
(7,26) .  Our analysis of 11 hereditary tumors, 
nine of which were informative at STRPs 
within 500 kb of SDHD, confirmed loss of 
maternal alleles in all nine cases. In four 
cases, including the two uninformative ones, 
the availability of highly enriched tumor cell 
populations by fluorescence-activated cell 
sorting allowed us to demonstrate that the 
mutated allele of SDHD was retained and that 
the normal wild-type SDHD allele was com- 

pletely lost in the tumor (27). Germ line 
loss-of-function mutations in the paternal al- 
leles and subsequent somatic loss of normal 
maternal alleles suggest that SDHD functions 
as a tumor suppressor gene at the cellular 
level and needs two events for inactivation. 
PGL is unusual among hereditary tumor syn- 
dromes in that the defective gene encodes a 
mitochondria1 protein. The growth advantage 
conferred by the loss of maternal chromosomes 
indicates that imprinting is not absolute in the 
normal CB or that there is secondary relaxation 
of imprinting at the maternal allele during tu- 
morigenesis. 

On the basis of the phenotypic similarity 
between PGL tumors and the normal CB 
exposed to chronic hypoxia, we hypothesize 
that cybS is a critical component of the oxy- 
gen-sensing system of paraganglionic tissue, 

- 1 2  
H. sapiens MAVLWRLSAVCGALGGRALLLRTPWR---PAHISAFLQDRPIPEWCGVQHIHLSPSHH~ 
B. taurus -MALWRLSVLCGAKEGRRLFLRTPVVR---PALVSAELQDRPAQGWCGTQHIHLSPSHHS 
A.suum ----- MLSAVRRAIPLSARILRTSLIQRCAGATSMVTGMPpPFDPIAAEKGFKPLHSH 
C.el egans - - - - - - - - - MMSLRHMAHFQKALLVAR--SAPRISTIVRATSTLNDGASKV---PDHS- 

* 

3 4 5 - 
H. sapiens GSKAASLHWTSERWSVULGLLPAAYLNPCSAMDYSLAAALTLBGHWGLGQWTDY--- 

and that its loss may lead to chronic hypoxic 
stimulation and cellular proliferation. Hy- 
poxic stimulation has also been implicated as 
an etiologic factor in von Hippel-Lindau dis- 
ease tumors, where there is constitutive acti- 
vation of HIF-1 (28). It is well known that 
solid tumors are hypoxic relative to normal 
tissue. This hypoxia not only affects gene 
expression patterns but it can also be an 
important prognostic factor and may make 
tumors resistant to radiation and certain 
forms of chemotherapy (29). Thus, hypoxic 
stimulation may provide a selective advan- 
tage for tumor cells (30). Interestingly, the 
SDHD-containing region on chromosome 
1 lq23 ( 7 )  is a common site of somatic dele- 
tions in bladder, breast, cervical, stomach, 
lung, ovary, and nasopharyngeal carcinomas, 
as well as melanoma (31). Identification of 
SDHD as the gene responsible for PGL will 
likely increase our understanding of tumori- 
genesis and may also have future therapeutic 
potential. 
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There are two theories about how honeybees estimate the distance to food 
sources. One theory proposes that distance flown is estimated in terms of 
energy consumption. The other suggests that the cue is visual, and is derived 
from the extent to which the image of the world has moved on the eye during 
the trip. Here the two theories are tested by observing dances of bees that have 
flown through a short, narrow tunnel to collect a food reward. The results show 
that the honeybee's "odometer" is visually driven. They also provide a cali- 
bration of the dance and the odometer in visual terms. 

It is well known that honeybees navigate 
accurately and repeatedly to a food source, as 
well as communicate to their nestmates the 
distance and direction in which to fly to reach 
it, through the "waggle dance" (1).However, 
the cues by which bees gauge the distance to 
the goal have been controversial. Early work 
suggested that flight distance is estimated in 
terms of energy consumption (2). More re- 
cent studies suggest that the primary cue is 
the integral, over time, of the image motion 
that is experienced en route (3-6) .  Here we 
put the two theories to a stringent test by 
recording dances of bees that have been 
trained to fly into a short, narrow tunnel to 
collect a food reward. 

The experimental bees (Apis mellifera li- 
gustica Spinola) were housed in a two-frame 
observation hive, with transparent walls on 
both sides. One frame was positioned above 
the other so that all comb faces were visible 
for observing and filming dances. The hive 
was located on the inside wall of a building, 
with an exit to the outside. Typically, six bees 
were individually marked and used for each 
experiment. 

In one series of experiments, individually 
marked bees were trained to forage at a feed- 
er carrying sugar solution placed in a wooden 
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tunnel 6.4 m long, 11 cm wide, and 20 cm 
high. The tunnel was positioned outdoors 
near the hive. The far end was closed, and 
bees could enter and leave the tunnel only at 
the near end. The top of the tunnel was 
covered with black insect-screen cloth, which 
permitted observation and provided the bees 
with a view of the sky. 

In experiment 1, the tunnel was positioned 
with its entrance 35 m from the hive, ahd was 
oriented along the direction to the hive (Fig. 
1A). The walls and floor of the tunnel were 
lined with a random visual texture (7). The 
feeder was placed at the entrance to the tun-
nel. Bees returning from the feeder performed 
predominantly round dances: The probability 
of a round dance was 85.2% (Fig. 1B). This is 
consistent with the fact that A. mellifera ligu-
stica performs mainly round dances when 
visiting food sources that are within 50 m of 
the hive (8).However, when the feeder was 
placed 6 m inside the tunnel (experiment 2), 
the bees performed primarily waggle dances: 
The probability of a waggle dance was 90.0% 
(Fig. 1B) (9). This change from round dances 
to waggle dances occurred while the distance 
flown by the bees had increased by a mere 
6 m, from 35 m in experiment 1 to 41 m in 
experiment 2. Clearly, in experiment 2, the 
feeder was still at a distance at which bees 
normally perform round dances when flying 

Why were the bees performing waggle 
dances in experiment 2? One possibility is 
that flight in the n a ~ ~ o w  tunnel generated a 
large integrated optic flow on the eye, mim- 
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