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resulting in substantially increased hydraulic 
gradients on the coastal plain. The more distant 
outlets of the groundwater flow, combined with 
greater hydraulic gradients, likely resulted in 
much deeper circulation of fresh water than at 
present. When sea level rose during the Pleis- 
tocene-~olocene transition, hydraulic gradients 
greatly decreased, and the Pleistocene ground- 
water in the lower parts of the aquifer was 
disconnected from the active flow system 
above. The reduced hydraulic gradients and 
resulting shallower groundwater circulation 
also prevented flushing of this part of the aqui- 
fer during the subsequent early to mid Holo- 
cene wet period. 
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The dynamics of multiple Plasmodium infections in asymptomatic children living 
under intense malaria transmission pressure provide evidence for a density-de- 
pendent regulation that transcends species as well as genotype. This regulation, in 
combination with species- and genotype-specific immune responses, results in 
nonindependent, sequential episodes of infection with each species. 

In malaria-endemic regions, humans com-
monly harbor chronic Plasmodium infections 
consisting of complex mixtures of different 
species ( I )  and genotypes of parasites (2). 
Longitudinal studies of animal malaria infec- 
tions have shown that infection dynamics are 
affected by cross-species immunity, resulting 
in within-host interactions between species 
[reviewed in (3)]. Direct evidence for the 
action of cross-species immunity in human 

malaria infections has been lacking. Consec- 
utive experimental infections with different 
species and genotypes indicated that immu- 
nity to human malaria is species- and geno- 
type-specific (4). Data on the dynamics of 
simultaneous multispecies (5) and multigeno- 
type coinfections ( 6 )are available from only 
a few experiments. In some instances of 
mixed infections of P. falciparurn and P. 
vivax, replacement of one species with anoth- 
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Fig. I. Plot of number of genotypes of (A) P. 
vivax and (B) P. falciparum per child against the 
proportion of smears positive under microscop- 
ic analysis for each species. 

er has suggested that the species can interact. 
However, the relevance of such data to natu- 
ral infections in individuals living in endemic 
regions is unclear. In such regions, individu- 
als are superinfected from birth, whereas ex- 
perimental data are derived from primary in- 
fections in nonimmune adults. 

Indirect evidence for interactions between 
human Plasmodium species comes from cross- 
sectional malaria surveys in which there is a 
deficit of mixed infections relative to that 
expected assuming no interaction (7), recip- 
rocal seasonality in the prevalence of differ- 
ent species (3, 8), and reduction in the sever- 
ity of malaria symptoms in individuals with 
limited pre-exposure to different species (9). 
None of these studies has provided informa- 
tion about parasite dynamics. To investigate 

'Wellcome Trust Centre for the Epidemiology of In- 
fectious Disease, Department of Zoology, University 
of Oxford, Oxford, OX1 3FY, UK. 'Papua New Guinea 
Institute of Medical Research, Post Office Box 378, 
Madang, Papua New Guinea. 3Department of Medi- 
cine, Division of Infectious Diseases, Emory University 
School of Medicine, Emory Vaccine Center at Yerkes, 
Atlanta, GA 30329, USA. 4Biology and Diagnostic 
Branch, Division of Parasitic Diseases, Centers for 
Disease Control and Prevention, Atlanta, GA 30341, 
USA. Slnstitute of Cell, Animal and Population Biolo- 
gy, University of Edinburgh, Edinburgh, EH9 3JN. UK. 

*To whom correspondence should be addressed. E- 
mail: marian.bruce@ceid.ox.ac.uk 

Fig. 2. Parasite dynamics in (A) child 19 and (B) child 31. Numbers between panels indicate sampling 
day over the 60-day period. (Upper panels) blue bars show total parasite density; light gray shading 
indicates the Lower microscopy sensitivity level (40 parasiteslpl); dark gray shading indicates the fever 
threshold [ I000  parasiteslpl(77)]; open bars are smear-negative samples. (Lower panels) Proportion of 
each species is shown for P. falciparum (orange), P. vivax (green), and P. malariae (yellow). 

the possible role of species-transcending im- able to each species (Fig. 2A). The dynamics 
munity in the control of malaria parasitemia of individual genotypes were also highly 
in humans, we analyzed the dynamics of variable (15). The density of each species 
multiple, coinfecting Plasmodium species changed over time, while total parasitemia 
and genotypes in infected but clinically was regulated around 1000 parasiteslpl of 
asymptomatic children. blood, for periods longer than any single 

The intrahost dynamics of Plasmodium spe- episode (16). This value is close to fever 
cies were determined in 34 children aged 4 to thresholds for children in this population (1 7) 
14 years, resident in Papua New Guinea (10). and is in agreement with the absence of clin- 
The children were exposed to all four species 
causing human malaria (I  I)  at an estimated rate 
of 0.86 infectious bites per person per day (12). 
Parasites were sampled every 3 days for 60 
days and species density was quantified by 
microscopy (13). Genotypes of P. falciparum 
and P. v i v a  were characterized by molecular 
typing (Table 1) (14). 

Parasites were present in all 34 children 
(Table 1) and 82% were infected with more 
than one species. Many were infected with 
multiple P. falciparum and P. v i v a  genotypes 
(Table 1) (14). The number of genotypes was 
positively correlated with the proportion of pos- 
itive smears across all age groups for P. v i v a  
(Fig. 1A) (r = 0.709, P = 0.002) and in chil- 
dren aged 5 to 14 for P. falciparum (Fig. 1B) 
(r = 0.742, P = 0.0001). These correlations 
demonstrate that increased smear positivity for 

ical symptoms (10). 
We tested total parasite density data for 

density-dependence using Bulmer's test (18), 
which distinguishes random changes from a 
tendency to return to an equilibrium value. Ev- 
idence for density-dependence was detected in 
log,, total density data from all but 3 of 19 
children tested (Table 1). Significance was re- 
duced when the test was applied to each spe- 
cies, in 9 of 13 children with sufficient data to 
test, indicating the cross-species nature of reg- 
ulation. ' Where a single species predominated 
but multiple genotypes were present (children 
number 6, 31, 4, 32, and 14), total parasitemia 
also exhibited density-dependence (Fig. 2B and 
Table I), suggesting that single-species coinfec- 
tions are regulated similarly. Maintenance of 
total parasite density around a threshold is in- 
consistent with dynamics resulting only from 

each species was due to more infections and not species- andlor genotype-specific immunity re- 
maintenance of a single genotype. Persistence sponsible for parasite clearance [reviewed in 
of single genotypes was observed only for P. (19)l. To account for these dynamics, additional 
falciparum in children aged 4 years (Fig. 1B) species-transcending, density-dependent regu- 
(15). lation of parasite density is required. 

Children with the highest proportion of To determine if there was evidence for in- 
smear-positive samples (Table 1) exhibited teractions between species, we analyzed the 
relative stability in total parasite density de- patterns of infection in the children. The num- 
spite complex underlying dynamics attribut- ber of children infected with > 1 species during 
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Table 1. Microscopy, genotyping, and statistical results. The Bulrner test (78) not done. Dashes indicate where a species was not detected. Pf, P. falciparum; 

was not used on data from 13 children with <50% positive smears and two  Pv, P. vivax; Pm, P. malariae; Po, P. ovale. 

children with autocorrelated total parasite density data (24). "nd" indicates 


Proportion Positive smears Genotypes Episodes5 Bulrner test on density (P) 
Blood of smears Species 

ID Age Sex smears positive detected* 
(anyspecies) Pf Pv Pm Po Pft Pv: Pf Pv Pm Total Pf Pv Pm 

5 4 r n 16 1.OO 14 10 0 0 2 2 7 2 4 0 0.05 0.01 >0.05 -
1 4 r n 16 0.94 7 1 0  0 0 2 1 4 3 2 0 0.0005 nd >0.05 -

12 8 rn 19 0.84 1 1 5 7 0 3 5 1 3 3 3 0.025 0.025 nd nd 
19 14 rn 18 0.83 7 3 1 1 0 3 5 nd 4 3 3 0.025 nd nd >0.05 
6 7 r n 11 0.82 8 1 1 0 3 6 nd 2 1 1 0.025 0.025 nd nd 

31 10 rn 16 0.81 1 2 4 0 0 2 9 4 3 4 0 0.0005 0.005 nd -
33 10 f 15 0.80 5 1 0  0 0 2 3 7 3 4 0 nd 
34 14 rn 15 0.80 1 0 3 1 0 3 5 nd 3 2 1 0.0005 0.01 nd nd 
25 12 rn 14 0.79 5 2 6 0 3 5 nd 2 2 4 >0.05 nd nd nd 
4 4 f 12 0.75 7 2 0 0 2 1 1 1 1 0 0.005 >0.05 nd -

24 14 rn 16 0.75 3 8 2 0 3 1 8 3 3 2 0.05 nd >0.05 nd 
22 14 f 19 0.74 1 0 4 1 0 3 4 3 4 4 1 0.0005 0.005 nd nd 
32 13 rn 19 0.74 1 2 3 0 0 2 5 nd 2 3 0 0.0005 0.0005 nd -
16 7 f 15 0.73 8 8 1 1 4 6 6 2 2 1 nd 
20 14 rn 16 0.69 6 6 1 0 3 6 3 1 6 1 0.0005 nd nd nd 
14 6 f 19 0.63 0 1 1  1 0 2 nd 3 0 5 1 0.005 - 0.025 nd 
18 5 f 15 0.60 5 5 0 0 2 4 3 4 2 0 0.05 nd nd -
29 11 f 12 0.58 1 2 5 0 3 nd nd 1 2 2 >0.05 nd nd nd 
17 6 rn 18 0.56 7 2 1 0 3 4 nd 2 1 1 0.001 nd nd nd 
2 4 r n 18 0.50 9 0 0 0 1 1 nd 4 0 0 0.001 0.001 - -

26 12 rn 18 0.50 4 2 3 0 3 4 nd 2 2 2 >0.05 nd nd nd 
11 9 f 13 0.46 4 2 0 0 2 5 nd 2 2 0 nd 
10 8 rn 16 0.44 3 5 0 0 2 5 3 2 4 0 nd 
15 9 f 19 0.42 1 6 1 0 3 n d 4 1 6 1 nd 
7 7 r n 18 0.39 5 1 1 0 3 3 n d 3 1 1 nd 
8 7 f 19 0.37 2 5 0 0 2 3 1 2 3 0 nd 

28 11 f 18 0.33 2 0 4 0 2 I n d l 0 1 nd 
27 10 f 19 0.32 1 5 0 0 2 nd 4 1 3 0 nd 
21 11 f 18 0.22 4 0 0 0 1 2 nd 2 0 0 nd 
9 7 r n 16 0.19 1 2 0 0 2 nd nd 1 1 0 nd 

23 11 f 16 0.19 0 3 0 0 1 nd nd 0 2 0 nd 
13 5 f 17 0.12 0 2 0 0 1 nd nd 0 2 0 nd 
30 11 f 19 0.1 1 0 2 0 0 1 nd nd 0 2 0 nd 

3 4 r n 13 0.08 0 1 0 0 1 nd nd 0 1 0 nd 

*By microscopy (73). +Determined by analysis of PfMspZ alleles (14). :Determined by analysis of PvMsp3a alleles (14). $Determined from microscopy data (16). 

the study was no different from that expected, pendent regulation alone can explain both the creased opportunity for other species to mul- 
assuming independence of each species (x2= stability of parasitemia and sequential infec- tiply when the constraint imposed by density- 
1.60, 2 df, P = 0.449). In contrast, a deficit of tions observed in our data. dependent regulation is removed. This could 
mixtures of species was detected when data We believe that the species interactions re- result in increased prevalence, transmission 
were analyzed cross-sectionally ( x 2  = 9.06, 2 sult from the interplay between density-depen- potential, and disease unless vaccines include 
df, P = 0.028).The peak density of episodes of dent regulation and the differential growth and targets specific for other species. 
different species (16) did not coincide as often clearance rates of individual parasite popula- 
as expected by chance ( x 2  = 6.56, 1 df, P = tions resulting from clonal antigenic variation References and Notes 
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Mutations in SDHD, a 
Mitochondria1 Complex II Gene, 

in Hereditary Paraganglioma 
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Hereditary paraganglioma (PGL) is characterized by the development of benign, 
vascularized tumors in the head and neck. The most common tumor site is the 
carotid body (CB), a chemoreceptive organ that senses oxygen levels in the 
blood. Analysis of families carrying the PCL7 gene, described here, revealed 
germ line mutations in the SDHD gene on chromosome 1lq23.SDHD encodes 
a mitochondrial respiratory chain protein-the small subunit of cytochrome b 
in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations 
based on the inheritance pattern of PGL, the SDHD gene showed no evidence 
of imprinting. These findings indicate that mitochondria play an important role 
in the pathogenesis of certain tumors and that cybS plays a role in normal CB 
physiology. 

Regulation of oxygen homeostasis is essen- gene responsible for PGL was mapped to 
tial for most organisms (1). In mammals, the chromosome band l lq23 (PGLl) and re-
CB, a highly vascular small organ located at mains the only locus confirmed in indepen- 
the bifurcation of the common carotid artery dent families (6-8). PGLl is inherited in an 
in the neck, plays a major role in acute adap- autosomal dominant fashion with incomplete 
tation to hypoxia (oxygen deprivation) by penetrance when transmitted through fathers, 
stimulating the cardiopulmonary system (2). whereas no disease phenotype occurs when 
At the cellular level, this adaptation involves transmitted maternally, This inheritance pat- 
activation of a transcription factor, hypoxia- tern is observed in all confirmed PGLl ped- 
inducible factor-1 (HIF-l), which subsequently igrees and suggests that there is sex-specific 
leads to a systemic response, including an epigenetic modification of PGLl during ga- 
increase in red blood cell mass, stimulation of metogenesis, consistent with genomic im-
new blood vessel growth, and increased ven- printing (9). This consistent inheritance pat- 
tilation (3).Chronic exposure to hypoxia (e.g., tern gives PGL a unique place among the 
as occurs in individuals dwelling at high al- known human genetic disorders with parent- 
titudes or in those with certain medical con- of-origin effects (10). Several features of 
ditions, such as cyanotic heart and chronic PGL tumors, including their benign biologi- 
lung diseases) induces cellular hyperplasial cal behavior, limited organ involvement, and 
anaplasia in the CB (4). histopathology, are markedly similar to those 

The CB is also the most common tumor of chronic hypoxia-stimulated CBs. This led 
site for hereditary paraganglioma (PGL), a us to hypothesize that the genetic defect in 
rare disorder characterized by the develop- PGLl involves a critical component in the 
ment of mostly benign, highly vascular, slow- oxygen-sensing and -signaling pathway. 
growing tumors in the head and neck. PGL We previously localized PGLl to an ap- 
tumors display cellular hyperplasia/anaplasia proximately 1.5-Mb critical interval between 
(5) in the absence of any hypoxic stimulus. A DllS1986 and DllS1347 (8). BAC and yeast 

artificial chromosome (YAC) contig con-
'Department of Psychiatry, 2Department of Human struction and discovery of 16 new simple 
Genetics, 3Pittsburgh Cancer Institute, 4Department tandem repeat polymorphisms (STRPs) (11) 
of Otolaryngology, The University of Pittsburgh Med- enabled us to confine PGLl to an approxi- 
ical Center, Pittsburgh, PA 15213-2593, USA. 5De- mate 400-kb region (12) flanked by the re- partment of Otolaryngology and Communicative Dis- 
orders, Long Island Jewish Medical Center, New Hyde combination breakpoints in families 5 (7) and 
Park, New York, NY 11040, USA. 'Department of 12 (8) (Fig. 1). 
Human Genetics, 'Department of Otolaryngology, Expressed sequence tag (EST) gene con- 
8Department of Pathology, Leiden University Medical tent mapping of transcripts (13) revealed a 
Center, 2300 RA, Leiden, Netherlands. =Wyeth-Ayerst 
Research, Genetics Institute, 35 Cambridgepark Drive, high density of transcripts in the 400-kb 
Cambridge, MA 02140, USA. PGLl critical region and in its close vicinity 
*To whom corres~ondence should be addressed. E- (11). A database search using BLAST with 
maik baysalbe@m;x.upmc.edu one of the ESTs in the critical region, 
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