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Dramatic changes in patterns of epidemics have been observed throughout this 
century. For childhood infectious diseases such as measles, the major transitions 
are between regular cycles and irregular, possibly chaotic epidemics, and from 
regionally synchronized oscillations t o  complex, spatially incoherent epidemics. 
A simple model can explain both kinds of transitions as the consequences of 
changes in birth and vaccination rates. Measles is a natural ecological system 
that exhibits different dynamical transitions at  different times and places, yet 
all of these transitions can be predicted as bifurcations of a single nonlinear 
model. 

Apart from their public health importance, 
epidemics of childhood infections have pro- 
vided valuable insights into theories of pop- 
ulation dynamics (1-3). Before mass vacci- 
nation began in the 1960s, epidemics of mea- 
sles exhibited both regular (annual, biennial, 
and triennial cycles) and irregular dynamics 
(3). In countries where mass immunization 
programs are now in place, measles epidem- 
ics have become more irregular as overall 
incidence has declined. In the United King- 
dom, mass vaccination has also coincided 
with a sharp reduction in the geographical 
coherence of measles epidemics (4). 

Mechanisms that sustain oscillations in the 
incidence of diseases such as measles are well 
known (I), but the causes of the transitions in 
pattems of epidemics are still poorly under- 
stood. Models that attempt to explain these 
transitions typically use the SEIR (Susceptible- 
Exposed-Infectious-Recovered) framework (5), 
using seasonal variation in transmission rate to 
mimic the aggregation of children in schools. 
Researchers using these models have empha- 
sized endogenous dynamical explanations of 
transitions, based on chaos (3) or noise-driven 
shifts among coexisting stable cycles (6) .These 
hypotheses suggest that it should be difficult or 
impossible to predict the timing and nature of 
specific transitions in measles dynamics. Here, 
we give an alternative explanation based on an 
exogenous factor-slow variation in the aver- 
age rate of recruitment of new susceptible+ 
which allows us to predict measles transitions 
in large cities on the basis of published birth and 
vaccine uptake data. 
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It has been noted that annual cycles of mea- 
sles epidemics occur in places where the birth 
rate is high (7). However, models normally take 
the average birth rate to be constant, implicitly 
ignoring the possibility that slow changes in 
this parameter could be a major driving force 
for dynamical transitions. We show that tempo- 
ral changes in birth or vaccination rates can be 
associated with a variety of dynamical transi- 
tions in measles, and that all these transitions 
can be explained as bifurcations of a nonlinear 
dynamical system. 

A very simple mathematical observation al- 
lows us to focus on a single parameter. For 
epidemic models that are not seasonally forced, 
it is an important standard result (8)that vacci- 
nation of a proportion p of the population ef- 
fectively reduces the mean transmission rate (P) 
by a factor 1 - p. This correspondence also 
holds for the full nonlinear dynamics of season- 
ally forced epidemic models (9). We predict, 
therefore, that vaccination at levelp will induce 
epidemic pattems identical to those in an 
unvaccinated population with mean transmis- 
sion rate (P)(l - p) .  In addition, we predict 
that changes in the birth rate v by a given 
factor should produce exactly the same dy- 
namical transitions as changing (P) by the 
same factor (9). 

Thus, in general, changes in the suscepti- 
ble recruitment rate v( l  - p )  cause effective 
changes in the mean transmission rate (P). A 
single bifurcation diagram in (P) therefore 
allows us to predict temporal transitions in 
measles dynamics, both before and after the 
start of mass immunization; all dynamical 
effects of changes in either birth or vaccina- 
tion rates map onto a single axis. 

The relation between recruitment rate and 
effective mean transmission rate, and the reduc- 
tion of the problem to a single bifurcation dia- 
gram, do not depend in any way on the pattern 
of seasonality in transmission. However, for 
any given amplitude of seasonal variation, the 

shape of the forcing function has a large effect 
on the dynamics (10). Consequently, for a giv- 
en seasonal amplitude, the structure of the (13) 
bifurcation d i a g k  depends on the shape of the 
seasonal forcing function. Because the (13) bi-
furcation diagram is central to predicting tran-
sitions, it is important to consider carefully both 
the amplitude and shape of the seasonal forcing 
function. 

Traditionally, seasonality in transmission 
has been incorporated in the SEIR model as 
sinusoidal forcing (3), which is a poor repre- 
sentation of the true pattern of seasonality. 
We adopt a more realistic approach, setting 
transmission rates high during school terms 
and low otherwise ["term-time forcing," orig- 
inally proposed by Schenzle (2) as an element 
of a realistic age-structured model]. The am- 
plitude of seasonality that can be- estimated 
from data (11, 12) corresponds to term-time 
forcing, not sinusoidal forcing, so it is impor- 
tant to use the term-time forced SEIR model 
when comparing with data (13). It is not 
necessary to complicate the analysis by ex- 
plicitly modeling age structure in the host 
population; we find (10) that the simple, 
term-time forced SEIR model behaves almost 
identically to recently favored age-structured 
models (2), indicating that the critical ingre- 
dient in measles models is a realistic seasonal 
forcing function rather than explicit modeling 
of heterogeneous transmission (10). 

Figure 1 presents a bifurcation diagram 
for the term-time forced SEIR model, with 
fixed parameters chosen to correspond to 
measles. The control parameter (on- the ab- 
scissa) is the mean transmission rate (P). The 
ordinate shows measles incidence on 1 Janu- 
ary of each year, so annual cycles are repre- 
sented by a single curve, biennial cycles by 
double curves, and so on. Different colors 
correspond to different stable solutions of the 
model, which attract different sets of initial 
conditions (basins of attraction). 

For several values of the mean transmis- 
sion rate (P), basins of attraction of the var- 
ious attractors are shown above the bifurca- 
tion diagram in Fig. 1. Where multiple stable 
solutions coexist, stochasticity can induce 
complicated dynamics due to shifts among 
attractors (6). The upper panels of Fig. 1 
show that the basins of coexisting attractors 
are more intermixed if (p) is smaller, so we 
expect the effects of stochasticity to be great- 
er for smaller (p) (or, equivalently, when the 
effective (p) is reduced by vaccination or a 
decrease in birth rate). 

Figure 2 shows measles incidence in four 
representative large cities; major dynamical 
transitions are evident in each case. Superim- 
posed on the time series, each panel shows 
births (in red). In the vaccine era, susceptible 
recruitment (light blue) is lower than births. 
Above the incidence data, horizontal lines 
indicate periods of annual, biennial, and more 
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complex dynamics that are predicted (Fig. 1) Britain or the United States (7). The demo- 
graphic parameters for developing countries 
during this period lie beyond the right-hand 
limit of the bifircation diagram in Fig. 1. We 
therefore expect strictly annual prevaccine 
measles dynamics in these countries-again 
consistent with time series data (7)-and the 
possibility of more complex dynamics with 
increasing vaccination levels (moving the 
system to the left in Fig. 1). 

In addition to the transitions in temporal 
dynamics, Fig. 1 may explain the desynchro- 
nization of measles epidemics after the intro- 
duction of mass vaccination in England and 
Wales (4). After the start of mass vaccina- 
tion, all cities entered the regime in which 
multiple stable cycles may coexist. To main- 
tain synchrony under such circumstances, 
different cities must do more than remain in 
phase; they must lock onto the same attractor 
at all times. We expect less and less synchro- 
ny as vaccination levels increase because the 
basins of coexisting attractors will become 
more densely intermixed (Fig. 1, upper pan- 
els), increasing the probability that stochas- 
ticity will cause shifts among attractors. In 
addition, mass vaccination may increase the 
effective magnitude of demographic stochas- 

ticity, because the pool of susceptible indi- 
viduals is greatly reduced. 

The bifurcation diagram in Fig. 1 is plot- 
ted for a particular seasonal amplitude, but 
the qualitative conclusions of the above dis- 
cussion are similar for a wide range of am- 
plitudes. For higher seasonality, the region 
with many attractors contains chaotic attrac- 

on the basis of the observed exogenous vari- 
ables (birth and vaccination rates). The hori- 
zontal lines in Fig. 2 are color-coded accord- 
ing to the corresponding attractors in Fig. 1. 

London (Fig. 2A) experienced biennial cy- 
cles of measles epidemics from 1950 to 1968; 
the estimated mean transmission rate for this 
period (1) is (P) = 1240, corresponding to a 
biennial attractor (dark blue, see Fig. 1). Before 
1950, epidemics were roughly annual; over the 
same brief period the birth rate was much high- 
er, which greatly increased the effective mean 
transmission rate, allowing attraction to an an- 
nual cycle (green, far right of Fig. 1). After 
1968, recruitment rates steadily decreased be- 

tors as well. Such high seasonal amplitudes 
would not change our conclusion that mea- 
sles dynamics will be irregular in this region. 
For lower seasonality, many of the attractor 
sequences cease to exist or end at higher (P), 
but the "ghosts of departed attractors" still 
influence the dynamics for low (P): There are 
extremely long and erratic transient dynamics 
(1 7) in this region. Again, this supports our 
prediction of irregularity, so we would expect 
the same qualitative dynamical picture to 
emerge in places that have significantly high- 
er or lower externally imposed seasonality. 

Ecologists often test theoretical models by 
manipulating the conditions of their study 
populations so as to stimulate dynamical 
changes (18). For measles and other parasitic 
infections, many such manipulations have 
been achieved indirectly (through changes in 

cause of mass vaccination (for example, when 
vaccine uptake reached 60%, the effective 
mean transmission rate was reduced to (P) = 
500); this brought the system into the parameter 
region where there are multiple coexisting at- 
tractors with extremelv intermixed basins. Sto- 
chastic effects do appear to cause frequent ran: 
dom jumps between these attractors (6) [as we 
have confirmed with Monte Carlo simulations 
(14)], providing an explanation for the irregular 
epidemics in the vaccine era. Alternatively, or 
in addition, irregular dynamics in this region 
may arise from stochastic interactions with a 
chaotic repellor (15, 16). Spectral analysis of 
the data in the vaccine era shows two major 

birth and vaccination rates) and monitored in 

peaks, at periods of 1 year and 2 to 3 years; 
spectral analysis reveals similar peaks in our 
Monte Carlo simulations (14). 

In Liverpool (Fig. 2B) the birth rate was 
much higher than the mean in England and 
Wales throughout the post-war period until 
1968 (12) (the birth rate in Liverpool is 
drawn as a dotted red line in Fig;. 2A as well, - 
for comparison with the birth rate in Lon- 
don). This explains the roughly annual cycle 
of measles epidemics over the same period. 
After 1968, the combination of vaccination 
and a lower birth rate brought Liverpool, like 

0-5 London, into the regime where irregular dy- ", 
namics are predicted. 

Birth rates in the United States were rela- 
tively low during the Great Depression. 
Throughout this period, measles epidemics 
were irregular in New York and Baltimore 
(Fig. 2, C and D), consistent with stochastic 
switching between densely intermixed attrac- 
tors or a chaotic repellor. After World War 
11, birth rates rose dramatically, pulling the 
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Mean Transmission Rate ( 8 )  

Fig. 1. The main panel is the bifurcation diagram for the term-time forced SElR model, showing 
incidence on 1 January, normalized by (constant) population size; the control parameter is the 
mean transmission rate (P). The fixed parameter values are y-' = 5 days, u-' = 8 days, = 
v lN  = 0.02 yearp1, seasonal amplitude 0.25 [see (5) and (73) for the meaning of these 
parameters]. Each attractor is identified with a different color. For sufficiently high (P), there is a 
unique (annual) attractor. As (p) is reduced, biennial, 3-, 4-, 5-, 6-, 7-, and 8-year cycles all occur, 
before all but the annual attractor are .extinguished. The term-time forcing function used to 
produce this figure corresponds to school terms in England and Wales. In the United States, the 
summer holiday is longer; this does not affect the structure of the bifurcation diagram, but with a 
longer summer holiday each of the various bifurcations occurs at lower (P) (70). Above the 
bifurcation diagram, basins of attraction (initial susceptibles, 0 < SolN < 0.1, versus initial 
infectives, 0 < /,IN < 0.0001, with EoIN = 0.0001) are shown for the various attractors at four 
particular values of (P). Figure 2 identifies regions of this diagram that correspond to the dynamics 
observed at various times and places. 

system out of the regime with irregular dy- 
namics. In New York, the birth rate quickly 
reached a plateau, apparently fixing the sys- 
tem on the biennial attractor. In Baltimore, 
the b i  rate continued to rise, .eventually 
enough to bring the effective (P) into the region 
of Fig. 1 where either biennial or annual cycles 
are possible (far right of Fig. 1). 

Developing countries provide a final ex- 
ample. There, birth rates over the periods 
shown in Fig. 2 were far higher than those in 
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great detail by the medical community. These 
"natural experiments" vary sufficiently in 
both space and time that we have been able to 
use them to explore the nonlinear dynamics 
of measles epidemics, mapping observed dy- 
namics onto the bifurcation cascade that re- 
sults from changes in effective transmission 
rate. Further opportunities to explore nonlin- 
ear ecological processes abound in infectious 
disease data. 

A very simple analysis of the SEIR model 
(9) has enabled us to relate dramatic shifts in 
measles dynamics to changes in the suscep- 
tible recruitment rate in the host population, 
and to propose simple explanations of ob- 
served dynamical transitions in individual cit- 
ies and in the pattern of synchrony among 
cities. An important implication is that it may 
be possible to design vaccination programs 
that induce desirable dynamical transitions 
[such as greater spatial synchrony, which 
may increase the probability of global eradi- 
cation (14, 19)]. 

Recognizing the low impact of contact 

heterogeneity among age groups (2) has high- 
lighted the importance of seasonal variation 
in transmission (which stimulates oscillations 
in incidence) and long-term trends in birth 
and vaccination rates (which drive dynamical 
transitions). This simplification (10) also im- 
plies a major analytical and computational 
benefit for future investigations of the spatio- 
temporal dynamics of measles. 

Our results reinforce the conviction of 
many empiricists that exogenous effects are 
critically important, but indicate that these 
effects should be studied simultaneously with 
nonlinear feedbacks in ecological and epide- 
miological systems. In the past, epidemic 
models have addressed these two phenomena 
separately, either by tracking responses of 
equilibria or nearly linear dynamics to exog- 
enous changes (I) or by considering nonlin- 
ear dynamics in isolated systems with con- 
stant parameters (3). We have considered the 
effects of slowly changing exogenous forces 
on a nonlinear system and have successfully 
predicted the complex patterns of measles 

Fig. 2. Measles dynam- 
ics in four large cities. 
(A) London, (B) Liver- 
pool, (C) New York, 
and (D) Baltimore. In 
each panel, the black 
time series shows the 
square root of measles 
incidence normalized 
by the population size 
in 1960 (5) (the data 
are Cweekly in the 
United Kingdom and 
monthly in the United 
States). The red curve 
shows annual births 
normalized bv the DOD- 

" 
1950 1960 1970 1980 Z 

Year 
ulation size i i  1966 (3. 
In (A) and (B), the light 0.06 
blue curve shows (nor- c 
malized) annual sus- $ 0.04 
ceptible recruitment 'F  
(which is Lower than 9 0.02 
the birth rate in the 2 vaccine era). Together N 

with the mean trans- 2 0 08 
mission rate (P), the re- 
cruitment rate deter- g O.O6 
mines the nature of the 5 0.04 
dynamics, as discussed + 

in the main text and I91 ,!? 0.02 

incidence. The general lesson for ecologists, 
epidemiologists, and dynamicists is that com- 
plex dynamical transitions in ecological sysl 
tems may often have simple underlying ex- 
ogenous explanations. 

References and Notes 
1. M. 5. Bartlett, j. R. Stat. Soc. A 120, 48 (1957); R. M. 

Anderson and R. M. May, Infectious Diseases of Hu- 
mans: Dynamics and Control (Oxford Univ. Press, 
Oxford, 1991); B. T. Grenfell, j. R. Stat. Soc. B 54,383 
(1992); B. Grenfell and J. Harwood, Trends Ecol. Evol. 
12, 395 (1997); 5. A. Levin, B. Grenfell, A. Hastings, 
A. 5. Perelson. Science 275, 334 (1997); C. Zimmer, 

(effects of changes 'ii 0 0 
birth rate will be de- 1930 1940 1950 1960 
layed by initial mater- Year 
nally acquired immuni- 
ty and the age of school entry). The vertical scale for Baltimore is higher because reporting rates were 
twice as high [see London and Yorke (3)]. Note that the American data cover an earlier period than the 
English data; perhaps because of increases in mobility with time (as well as differences in population 
density), estimated values of (P) are significantly Lower for the American cities (20). This (and the length 
of the summer holiday; see legend to Fig. 1) must be borne in mind when comparing measles incidence 
data with various regions of Fig. 1. The colored lines at the top of each panel correspond to the region 
of the bifurcation diagram in Fig. 1 that applies to each section of the measles time series. Many colored 
lines together indicate the region of Fig. 1 containing many coexisting attractors with intermixed basins. 
Two horizontal blue Lines indicate the biennial attractor in Fig. 1, while the single green Line indicates the 
annual attractor that exists for high transmission rates. Caps, where no region of Fig. 1 is indicated, 
correspond to transient periods when the recruitment rate changed relatively rapidly. 

. . ,. 
Science 284. 83 (1999). 

2. D. Schenzle. /MA j. Math. Appl. Med. Biol. 1. 169 
(1984); B. M. Bolker and B. T. Grenfell. Proc. R. Soc. 
London Ser. B 251. 75 (1993); D. Mollison and 5. Ud 
Din, Math. Biosci. 117, 155 (1993); N. M. Ferguson, 
R. M. May. R. M. Anderson, in Spatial Ecology, D. 
Tilman and P. Kareiva, Eds. vol. 30 of Monographs in 
Population Biology (Princeton Univ. Press. Princeton. 
N], 1997), pp. 137-157. 

3. W. London and J. A. Yorke, Am. j. Epidemiol. 98,453 
(1973); W. M. Schaffer, /MA j. Math. Appl. Med. Biol. 
2, 221 (1985); W. Schaffer and M. Kot, j. Theor. 6\01, 
112, 403 (1985); L F. Olsen, G. L. Truty, W. M. 
Schaffer, Theor. Pop. Biol. 33, 344 (1988); L F. Olsen 
and W. M. Schaffer. Science 249. 499 (1990); W. 
Schaffer, B. Kendall, C. Tidd, L. Olsen, /MA j. Math. 
Appl. Med. Biol. 10. 227 (1993); R. En~bert and F. R. 
drepper, in Predictability and  ionli linear Modelling in 
Natural Sciences and Economics, J. Gasman and G. 
van Straten, Eds. (Kluwer, Dordrecht, Netherlands. 
1994), pp. 204-215; P. Glendinning and L P. Perry. J. 
Math. Biol. 35, 359 (1997); 5. P. Ellner et aL,Am. Nat. 
151, 425 (1998). 

4. B. M. Bolker and B. T. Grenfell, Proc. Natl. Acad. Sci. 
U.S.A. 93, 12648 (1996). 

5. The dynamical equations for the SEIR model (1) are 

The birth rate is v and the death rate per capita is p,. 
The mean latent and infectious periods of the disease 
are u-' and y-'. p is the rate of disease transmission 
between individuals; the mean transmission rate (P) 
= yR,, where R, is the empirically measured basic 
reproductive ratio of the infection (7). If P is con- 
stant, then Eqs. 1 lead to a (stable) endemic equilib- 
rium provided R, > 1, which is true for measles. If 
the transmission rate varies seasonally (3, 70), then a 
broad range of dynamical behavior is possible, de- 
pending on R, and the amplitude of seasonal forcing 
[Fig. 1 and (lo)]. For graphical presentation of results, 
we normalize Eqs. 1 by dividing by a constant (the 
total population size N if it is constant, or the pop- 
ulation size No at a given time if N is changing). 

6. 1. B. Schwartz and H. Smith, j. Math. Biol. 18, 233 
(1983); 1. B. Schwartz. j. Math. Biol. 21, 347 (1985); 
J. L. Aron. Theor. Pop. 6/01, 38, 58 (1990). 

7. A. Mclean and R. Anderson, Epidemiol. Infect. 100, 
11 1 (1988); Epidemiol. Infect. 100, 419 (1988); B. 
Grenfell, A. Kleczkowski, 5. Ellner. B. Bolker, Philos. 
Trans. R. Soc. London Ser. A 348, 515 (1994). 

8. R. M. May, in Biomathematics, T. Hallam and 5. Levin, 
Eds. (Springer-Verlag. Berlin. 1986), vol. 17, pp. 405- 
442. 

9. If a proportion p of newborns is vaccinated then Eqs. 
l a  and I d  become 

www.sciencemag.org SCIENCE VOL 287 28 JANUARY 2000 



R E P O R T S  

and the other SElR equations are unchanged. Now 
consider a simple change of variables: S = S'(1 - p ) ,  
E = E ' ( l  - p),  I= / ' ( I  - p),  and R = R ' ( l  - p )  + 
(u l l~ - )p .The dynamical equations for the primed 
variables are exactly the SElR equations without vac-
cination, i.e., Eqs. 1, except that the transmission rate 
p is replaced everywhere by P(1 - p) .  Thus, except 
for an overall reduction in the number of cases, when 
a proportion of a population is vaccinated the dy-
namics are identical to those of an unvaccinated SElR 
system with a smaller mean transmission rate, (p) -, 
(p) (1 - p).  Because birth rate v enters the dS/dt 
equation in exactly the same place as vaccination, a 
similar argument applies to changes in birth rate. A 
change in birth rate from v to v' is dynamically 
equivalent to a change from (P) to (P) (u'lv). This is 
why we can predict the character of the population 
dynamics of measles (or other infections) after vac-
cination or birth rate changes, and explain a wide 
variety of data with a single diagram (Fig. 1). 

10. D.J. D. Earn, B. M. Bolker, P. Rohani, B. T. Crenfell, in 
preparation. 

11. P. E. Fine and J. A, Clarkson, Int. J .  Epidemiol. 11. 5 
(1982). 

12. B. F. Finkenstadt and B. T. Grenfell, Proc. R. Soc. 
London Ser. B 265. 211 (1998). 

13. Good fits to measles incidence times series can be 

obtained with the SElR model only if term-time 
forcing is used. However, in (70) we show that the 
sequence of bifurcations in the term-time forced SElR 
model is reproduced by the sinusoidally forced SElR 
model (at much lower forcing amplitude). A relevant 
bifurcation diagram can therefore be generated using 
sinusoidal forcing, though only if the appropriate 
amplitude is determined, which is a somewhat subtle 
procedure (70). Most previous discussions of measles 
dynamics have assumed sinusoidal seasonal forcing 
with an amplitude of 0.28, which yields a chaotic 
attractor (3); this level of forcing is about three times 
higher than i t  should be. A term-time forcing ampli-
tude of 0.25 (used in Fig. 1) corresponds to a sinu-
soidal forcing amplitude of roughly 0.08 (10). 

14. P. Rohani, D. J. D. Earn, B. T. Crenfell, Science 286, 
968 (1999). 

15. D. A. Rand and H. B. Wilson, Proc. R. Soc. London Ser. 
B 246, 179 (1991). 

16. Because the seasonal amplitude cannot be measured 
precisely (and longer time series are not available) we 
will probably never be certain whether periods of 
irregularity in measles time series arise from stochas-
tic hopping between coexisting attractors or stochas-
tic interactions with (possibly chaotic) repellors. 
However, i t  seems that irregular behavior must be 
induced to some extent by noise, i.e., the source of 

irregularity cannot be a chaotic attractor. Seasonal 
amplitudes above the minimum required for a cha-
otic attractor to be reached appear to be ruled out by 
the data (70. 73). 

17. A. Hastingsand K. Higgins.Science 263, 1133 (1994). 
18. R. F. Costantino, R. A. Desharnais, J. M. Cushing, B. 

Dennis, Science 275,389 (1996); M. Holyoak and S. P 
Lawler, J. Anim. Ecol. 65, 640 (1996); P. J. Hudson, 
A. P. Dobson, D. Newborn, Science 282, 2256 (1998); 
P. Turchin, A. D. Taylor, J. D. Reeve, Science 285, 1068 
(1999). 

19. D. J. D. Earn, P. Rohani, B. T. Crenfell, Proc. R. Soc. 
London Ser. B 265, 7 (1998). 

20. R. M. Anderson, Ed., The Population Dynamics of 
Infectious Diseases: Theory and Applications Chap-
man and Hall, London, (1982). 

21. We thank S. Balshine, 0.Bjernstad, B. F. Finkenstadt, 
R. A. Johnstone, S. A. Levin, D. A. Price, and the 
anonymous referees for helpful comments. Support-
ed by a Wellcome Trust postdoctoral research fel-
lowship in mathematical biology (D.J.D.E.),a Natural 
Environment Research Council postdoctoral research 
fellowship and a Royal Society University Research 
Fellowship (P. R.), and the Wellcome Trust (B.T.C.). 

24 September 1999; accepted 26 November 1999 

Take a hike! 
I n  our Enhanced Perspectives, we navigate the virtual forest for you. 
Each week, one Perspective from Science's Compass links readers to 
the best related Web-based content: 

research databases 
tutorials 
glossaries 
abstracts 
other online material 

Take your virtual hike at www.scienc iscle-perspectives.shtm1 

670 28 JANUARY 2000 VOL 287 SCIENCE www.sciencemag.org 


