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permanent wavelike deformation only occured 
on the outer surface of these MWCNTs. We 
speculate that when the outer layer of the 
MWCNT breaks at these large stresses, the ac- 
cumulated elastic energy is released and gener- 
ates a stress wave; the stress wave travels 
through the outer surface of the MWCNT and 
permanently deforms it (31). A second possibil- 
ity is that an accordia-like relaxation of the outer 
shell onto the inner section occurred irnmediate- 
ly after the breaking of the outer shell. Ribbon- 
like structures were also often seen in the TEM 
images of the MWCNT fragments (Fig. 4C) and 
might result in the section of the outer shell from 
which the inner section has been pulled out. 
Radial collapse of the MWCNT fragment (Fig. 
4D) was also seen. At high tensile strain, the 
MWCNT experiences a Poisson contraction, 
which could trigger radial collapse. Partial, and 
total, radial collapse of MWCNTs has been 
previously reported (16,32, 33). Observation of 
these types of fragments suggests that the effect 
of large tensile load and of fracture on nanotube 
structure will be a fascinating area for fkther 
study. Future directions include attempting me- 
chanical-loading measurements on SWCNT 
ropes and individual SWCNTs, as well as on 
other types of nanotubes such as boron nitride, 
and studying the influence of strain rate, tem- 
perature, and chemical environment. 
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Gene Cluster 
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The polyketide epothilone is a potential anticancer agent that stabilizes mi- 
crotubules in a similar manner to Taxol. The gene cluster responsible for 
epothilone biosynthesis in the myxobacterium Sorangium cellulosum was 
cloned and completely sequenced. It encodes six multifunctional proteins com- 
posed of a loading module, one nonribosomal peptide synthetase module, eight 
polyketide synthase modules, and a P450 epoxidase that converts desoxy- 
epothilone into epothilone. Concomitant expression of these genes in the 
actinomycete Streptomyces coelicolor produced epothilones A and B. Strep-
tomyces coelicolor is more amenable to strain improvement and grows about 
10-fold as rapidly as the natural producer, so this heterologous expression 
system portends a plentiful supply of this important agent. 

The epothilone polyketides (1) stabilize micro- 
tubules by means of the same mechanism of 
action as the anticancer agent Taxol (2). How- 
ever, epothilones are advantageous in that they 
are effective against Taxol-resistant tumors and 
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are sufficiently water soluble that they do not 
require deleterious solubilizing additives (3). 
For these reasons, epothilone is widely per- 
ceived as a potential successor to Taxol (4). 

The paucity of epothilones currently obtain- 
able represents a major impediment to clinical 
evaluation of this important agent. The epothi- 
lone producer Sorangium cellulosum yields 
only about 20 mg l i t e r '  of the polyketides and 
has a 16-hour doubling time that makes produc- 
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tion in this organism economically impractical 
(1). Further, while epothilones A (1) and B (2) 
are the most abundant congeners (produced in a 
2 :1 ratio) in fermentation extracts, 12,13-des- 
oxyepothilone B (4; epothilone D) has the high- 
est therapeutic index but is produced in only 
trace amounts (4). Owing to the lack of a 
satisfactory fermentation process, the total syn- 
thesis of epothilones has been pursued as a 
source of material and in order to develop struc- 
ture-activity relations (3, 5, 6).  The Danishef- 
sky (3, 5) and Nicolaou ( 6 )  research groups 
have reported tour de force efforts for the com- 
plete synthesis of epothilone and numerous an- 
alogs. However, given the complexity of the 
over 20 synthetic-step processes, fermentation- 
based methods are likely to reign as preferred 
practical approaches for large-scale production 
of the epothilones. 

Here we demonstrate the production of 
epothilones A and B in a "fermentation-friend- 
ly" heterologous host. To accomplish this, we 
cloned and sequenced the entire 56-kb epothi- 
lone gene cluster, which encodes a polyketide 
synthase (PKS), including a nonribosomal pep- 
tide synthetase module, and a cytochrome P450 
epoxidase. Introduction of all the genes of the 
cluster into Streptomyces coelicolor CH999 led 
to the production of epothilones A and B. Het-
erologous production of the cytochrome P450 
EpoK in Escherichia coli and an in vitro assay 
provided direct evidence that this enzyme cat- 
alyzes the conversion of desoxyepothilone (3 
and 4) into epothilone (1 and 2) as the fmal step 
in epothilone biosynthesis. 

Type I PKSs and nonribosomal peptide 
synthetase~ (NRPSs) are large multifunctional 
protein complexes organized in a modular 
fashion. Each PKS module activates and in- 
corporates a two-carbon (ketide) unit build- 

EpoA EpoB EpoC 

ing block into the polyketide backbone. The 
number and order of modules, and the types 
of ketide-modifying enzymes within each 
module, determine the structural variations of 
the resulting products. The epothilones show 
two interesting structural variations when 
compared to a prototypical polyketide such as 
6-deoxyerythronolide B: a thiazole moiety and 
a geminal dimethyl group. A gene cluster that 
includes a NRPS module flanked by PKS mod- 
ules, one of which contains an embedded meth- 
yl transferase, could produce such variations. 

Using polymerase chain reaction (PCR)- 
generated hybridization probes ( 7 ) , we iso- 
lated four overlapping cosmid clones from a 
genomic library of S. cellulosum strain 
SMP44. DNA sequence analysis revealed 
eight open reading frames (ORFs) that span 
over 56 kb (Fig. 1). They include epoA (en-
coding the 149-kD loading domain), epoB 
(158 kD, a NRPS module), epoC (193 kD, 
PKS module 2), epoD (765 kD, PKS modules 
3 to 6), epoE (405 kD, PKS modules 7 and 8), 
epoF (257 kD, PKS module 9 plus a thioes- 
terase domain), epoK (47 kD, a cytochrome 
P450), and an ORF immediately downstream 
of epoK that encodes a protein with three 
membrane-spanning regions (ORFl). 

The domain organization of the epothilone 
gene cluster is consistent with the structure of 
epothilone. The role of the enoylreductase (ER) 
domain within the loading module is &own; 
it may be cryptic or it may play a role in the 
oxidation of the thiazoline to the thlazole. The 
only function absent is a dehydratase (DH) do- 
main in module 4, which would generate a cis 
double bond between carbons 12 and 13. Dehy- 
dration could occur either in the next module 
(which possesses an active DH domain) by an 
atypical process, or by action of a post-PKS 

EpoD 

modifying enzyme. Another intriguing feature 
of the PKS is that the acyltransferase (AT) 
domain of module 4 accepts either malonyl or 
methylmalonyl extender units. This relaxed 
specificity is consistent with the PKS producing 
both evothilones A and B in the absence of an 
identifiable separate methyltransferase. A meth-
yltransferase (MT) domain is integrated into 
module 8 between the DH and ketoreductase 
(KR) domains and is believed to methylate C-4 
of the epothilones to generate the gem-dimethyl 
function. Similar MT domains have been ob- 
served in the PKSs for lovastatin, furnonisin, 
and yersiniabactin biosynthesis (8).Another no- 
table feature of the epothilone polyketide mega- 
synthase is the presence of an NRPS module 
flanked bv two PKS modules. This NRPS mod- 
ule contains signature sequences for recognizing 
cysteine as well as a cyclization domain, which 
leads to the formation of the thiazole (9). 

For heterologous expression of the epothi- 
lone gene cluster, and production of epothilone, 
we used the well-characterized actinomycete S. 
coelicolor.In contrast to S. cellulosum, S, coeli-
color is well understood genetically and 
genomically and has a doubling time of only 2 
hours. Vector systems for the expression of 
PKS gene clusters in this organism have been 
described (10) and used to synthesize a variety 
of bacterial and fungal natural products (11). 
The large epothilone biosynthetic gene cluster 
was cloned into two compatible plasmids (12). 
The epoA, epoB, epoC, and epoD genes were 
cloned as an operon behind the actI promoter 
on a thiostrepton-resistant SCP2* derivative 
(13), whereas epoE, epoF, epoK, and ORFl 
were fhsed as a second operon to the actI 
promoter on an apramycin-resistant pSET152 
derivative (14). The plasmids were introduced 
into S. coelicolor CH999 (15), and transfor- 

EpoE EpoF 
module 7 module 8 module9 EpOK 

AT KR ACP TE)( >Loading NRPS module 2 module 3 module 4 module 5 module 6 

lKsyiT)A$)IKSKS AT DH KR A C P ~KS AT KR A C P ~ K S  KS AT DH ER KR A C ~ K SAT DH ER KR A C P ~  AT KR ACP (KS ATMT A C ~ ~ K S  

Epothilones A (1; R=H) and B (2; R=CH,) Epothilones C (3; R=H) and D (4; R=CH,) 

Fig. 1. Modular organization of the epothilone polyketide synthase (PKS). 
Functional domains of each of the epothilone PKS modules are shown. 
Stepwise synthesis of epothilones begins at EpoA and ends with the 
cyclization by the TE domain in EpoF t o  yield either epothilones C and D 
or the hypothetical molecule containing the OH group at C-13. Abrevia- 
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tions: KS, P-ketoacyl ACP synthase; KSy, P-ketoacyl ACP synthase con- 
taining a tyrosine substitition of the active-site cysteine; AT, acyltrans- 
ferase; DH, dehydratase; ER, enoylreductase; KR, ketoreductase; MT 
methyltransferase; ACP, acyl carrier protein; TE, thioesterase; C, conden- 
sation; A, adenylation; PCP, peptidyl carrier protein. 
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mants were -mown on R2YE medium. The 
transformants produced epothilones A and B' 
as verified by high-performance liquid chro- 
matography (BPLC), mass spectroscopy 
(MS) of the molecular ions, and, for epothi-
lone A, mass pattern (I6). Re- 
centlv, deletion of epoK and the downstream 
gene-(ORF1) producedepothilones c and D 
(17). Initial yields of the epothilones in these 
studies were 50 to 100 ue. - l i t e r ' .  Given the 
high growth rate and pliability of S, coeli-
color to genetic and conventional strain im-
provement, this system promises to evolve 
into the preferred of epothilone. 

In addition, e p o ~gene was expressed in 
E. coli. E ~ ° Kwas purified (I8) and shown to 
have an ultraviolet KJV\-visible suectrum- - ~  

\ , 

characteristic of a cytochrome p450 enzyme.
The purified protein converted desoxyepothi- 
lone B (4) to epothilone I3 (2) (19), indicating 
that the epoxidationreaction is the last step 
the biosynthetic pathway. 

The uroduction of euothilones A and B in S. 
coelicol~r that the polypeptides 
encoded by the epoA-F and epoK and the 
small molecule precursors in the heterologous 
host are suficient for epothilone biosynthesis. 
l-he availability of a heterologous expression 
system portends rapid advancement in several 
important areas. First, protein and metabolic 
engineering of the expression system are now 
possible that, together with conventional strain 
improvement approaches, will enhance produc- 
tivity and increaseavailability of the epothi- 
lone% to the poorly and 
slow-mowing 3. cellulosum.5'. coelicoloroffers 
major"advan~ges, because it is readily amena- 
ble to genetic manipulation and about 
10-fold faster. Second, it should now be possible 
to construct an expression system for the cur- 
rently most attractive clinical candidate, des- 
oxvepothilone, as the sole fermentation product. 
TLScould be achieved by two relativel; simple 
modifications that have precedent in the manip- 
ulation of PKS gene clusters (20): (i) substitu- 
tion of the nonspecific AT of module 4 with a 
methylmalonyl-specific AT to prevent forma- 
tion of epothilones A and C, and (ii) inactivation 
or omission of epoK to prevent conversion of 
desoxyepothilone to epothilone B. Finally, as 
demonstrated for etythromycin (24, the avail- 
ability of cloned genes and a plasmid-borne 
expression system will allow facile manipula- 
tion of the epothilone PKS to produce potential- 
ly superior epothilone analogs. 
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