
OM1361,(13.61 carats; 6% = 22.3, one anal- 
ysis). This result contradicts the proposed origin 
of old mine emeralds from lost mines located in 
southeast Asia but validates gemological obser- 
vations by Ward (1).The fourth old mine em- 
erald analyzed (OM 451, 4.51 carats) has a 
value of 13.0 ? 0.6%0 (two analyses), which is 
suggestive of an origin in Afghanistan. Mines 
located in the Pansher valley in Afghanistan 
contain emeralds having SL80  values ranging 
from 13.2 and 13.9%0 (4). These Afghan mines 
were mapped by the Soviets in 1976, but the 
6180 value of old mine emerald OM451 shows 
that these mines were already exploited at least 
as early as the 18th century. 

The 6180 values of old mine emeralds 
thus indicate that in the 17th and 18th centu- 
ries A.D., famous treasures found today in 
India, in the Topkapi Sarayi Palace and in the 
Markazi Bank, were constitued not only from 
New World stones (probably constituting the 
dominant fraction) but also, as previously 
proposed, from old Asian emeralds. 
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Quantum-Critical Conductivity 

Scaling for a Metal-Insulator 


Transition 

H.-L. Lee,' John P. ~arini, '*  David V. ~axter , 'W. Henderson,' 

Temperature (T)- and frequency (w)-dependent conductivity measurements are 
reported here in amorphous niobium-silicon alloys with compositions (x) near the 
zero-temperature metal-insulator transition. There is a one-to-one correspondence 
between the frequency- and temperature-dependent conductivity on both sides of 
the critical concentration, thus establishing the quantum-critical nature of the 
transition. The analysis of the conductivity leads t o  a universal scaling function and 
establishes the critical exponents. This scaling can be described by an x-, T-, and 
w-dependent characteristic length, the form of which is derived by experiment. 

A quantum phase transition (QPT) is a zero- 
temperature, generically continuous transition 
tuned by a parameter in the Hamiltonian at 
which quantum fluctuations of diverging size 
and duration (and vanishing energy) take the 
system between two distinct ground states. Ex- 
amples of QPT include the integer and fraction- 

'Department of Physics, Indiana University, Bloom- 
ington. IN  47405. USA. 2Department of Physics, Uni- 
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a1 Quantum-Hall transitions, magnetic transi- 
tions of cuprates or heavy-Fermion alloys, and 
metal-insulator and superconductor-insulator 
transitions in disordered alloys (1). 

These transitions are intrinsically complicat- 
ed because of strong interactions between elec- 
trons and the frequent presence of static disorder 
(2). However, two features specific to QPTs 
make them amenable to experimental and theo- 
retical study: (i) the diverging length and time 
scales of the fluctuations that drive the transi- 
tions favor the use of scaling relations (3) in 
describing experimental results, and (ii) the 
dominance of quantum fluctuations near the 
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critical point forces a coupling between quan- 
tum dynamics and thermodynamics that may be 
used to interrelate the results from a variety of 
experimental probes, even in the absence of a 
complete microscopic theory (4, 5) .  Unfortu-
nately, explicit and convincing demonstrations 
of this scaling have been rare ( 6 ) , but experi- 
ments have successfully probed the dynamics in 
a limited range of parameters (7). The scaling 
functions themselves have not yet been estab- 
lished experimentally; however, some progress 
has been made theoretically ( I ) .  

Here we report a series of experiments that 
tests in detail the predictions of the scaling 
picture of quantum-critical dynamics. We de- 
scribe measurements of the temperature (T), 
frequency (w). and alloy concentration (x) de-
pendences of the electrical conductivity for Nb-
Si alloys near the metal-insulator transition and 
then establish the existence of scaling relations 
directly from experimental data. Our data are 
consistent with the predictions of the scaling 
theory, and we have used simple equations to 
describe this scaling behavior. 

The dynamical behavior near a metal-in- 
sulator critical point for which the effective 
electron-electron interaction is nonzero and 
finite (2) can be expressed in the form 

a ( .u ,T ,o )  = ( e2 / f ih"  2 )g ,  (bl<,,h/lr,hil,,) 

(1)  

Fig. 1. (A) The dc con- 
ductivity for NbSi al- 
loys with varying Nb 
concentration. The sam- 
ple with the open circles 
is very close to the crit- 
ical concentration, with 
a r T112 approaching 
the limit T +0 (see in- 
set). Samples with con- 
ductivity curves above it 
remain metallic because 
the conductivity re-
mains nonzero, whereas 
samples with conductiv- 
ity curves below it will 
not conduct for T = 0. 
Solid symbols, metallic 
samples; open circles, 
critical sample; other 
open symbols, insulat- 
ing samples. (8)The fre- 
quency dependence of 

r 
1 

the real Dart of the con- 

where a is the conductivity, d is the spatial 
dimension, h is an arbitrary length scale, 1, and 
Ic0 are characteristic lengths determined by the 
temperature T and frequency o. respectively, 
and g, is two dimensionless universal func- 
tions (g, for metallic systems and g_ for insu- 
lating ones; the functions are identical at the 
critical point). For example, on the metallic side 
of the transition, for low temperatures and fie- 
quencies (<<< (u, I,), the conductivity in a d = 
3 metal-insulator transition will be controlled 
by the alloy concentration through the quantum 
correlation length 

where v is the correlation length exponent 
Instead, if the controlling length scale is cho- 
sen to be the thermal length ( b  = I,). the 
scaling form of a for low w can be s~mplified 
to 

o (T .n )  = (e2 filT)g, (IT/<,)  (3) 

where 

IT " (k,T)- ' (4) 

where z is the dynamical exponent and k ,  is 
the Boltzmann constant; the frequency-de-
pendent expressions are completely analo-
gous, making the replacement (k,T --t h o ) .  

To explore the scaling behavior, samples 

3000 

with different Nb concentrations were grown 
on 0.5-mm-thick sapphire substrates as de- 
scribed previously (8) . The dc conductivity 
was measured with a standard four probes 
technique over a wide range of temperature 
(Fig. 1A). This technique helps to separate 
metallic samples. for which o approaches a 
constant at low temperature (solid symbols). 
and insulating samples. for which o falls 
rapidly at low temperature (open symbols). 
The sample represented by the open circles 
will establish itself as being extremely close 
to the transition. As seen in the inset. the 
conductivity varies linearly as a function of 
T' for the more metallic samples in the 
temperature range from 1.4 to 16 K. 

The ac conductivity was measured at fre- 
quencies ranging from 5 to 1000 GHz. Two 
different techniques were used at the lower and 
higher frequencies, respectively. Both methods 
exploit the fact that when an electromagnetic 
wave goes through a film that is thin compared 
with the skin depth, the energy loss is propor- 
tional to the real part of the conductivity of the 
film, and the imaginary part of the conductivity 
gives a phase shift. At 5 and 12 GHz, measure- 
ments were made with resonant cavities ( 9 ) .  
Millimeter-wave transmission measurements 
were done over the frequency range 80 to 1000 
GHz with a quasi-optical spectrometer (10).The 
sample and substrate form a Fabry-Perot cavity 

- _, 

a-
 -
2000 - --

h 

E 1000 --C: 2 Kelvin 

Metallic Sample 
.;. -150 K-eW- .  

-.,./.. 
A / -

/ 

-
I I 2 Kelvin r 

10 100 
Temperature (K) 

50 Kelvin 
sample The data shown are for temperatures of 2 K (x),4 K (o),6 K (o), 10 K (A),14 K (V),20 
K (@), 30 K (o),and 50 K (*) 1000 7 

ductlv~t); at several temperatures for the crltical sample, a metall~c sample, and an insulating 3000 I _ - - -

-
-

- */ 

100 2 Kelvin Insulating Sample 
/ 

Frequency (GHz) 

28 JANUARY 2000 VOL 287 SCIENCE www.sciencernag.org 

/ I  



R E P O R T S  

for the millimeter-wave radiation, and the real 
part of the conductivity of the film can be ex- 
tracted from the magnitudes of the transmission 
peaks. The imaginary component of the film's 
conductivity can be determined at each peak by 
the small changes in its peak frequency. 

The frequency dependence of the real part 
of the conductivity was measured at several 
temperatures for three different samples (Fig. 
lB), including the critical sample and one each 
of the metallic and insulating samples. With the 
exception of a subset of the insulating sample 
data in which both the temperature is low (T < 
10 K) and the frequency is low ( o  < 100 GHz), 
all three samples exhibit the same behavior. 
First, at the highest temperatures, the conduc- 
tivity is frequency-independent. Second, at the 
highest frequencies, the conductivity tends to 
become temperature-independent for T < 20 K. 

Fig. 2. (A) Scaling plot of the conductivity data 
shown in Fig. 1A with a < 6000(ohm m)-' 
(includes data for samples not shown in Fig. IA). 
Data on the metallic and insulating side collapse 
onto different scaling functions. The scaling func- 
tion on the metallic side is described by g = 1 + 
145 (upper dashed curve) and on the insulating 
side is described by g = exp(-140 (Lower dashed 
curve). Symbols are as in Fig. 1A. (B)Zero-tem-
perature limit of the conductivity of metallic 
samples and the e21fi< value for insulating sam- 
ples plotted against their conductivity value at 77 
K. The dotted Lines are linear fits t o  the data, 
which both suggest a critical point at the concen- 
tration for which IS,,- 5800(ohm m)-'. Open 
circles, insulating samples; solid circles, metallic 
samples. Error bars indicate uncertainties in the 
extrapolated values. 

The scaling analysis presented below shows 
that the T-o crossover is essentially identical for 
all three samples. 

The objective of the scaling analysis is to 
describe the temperature, frequency, and 
composition dependences of the conductivity 
in one unified picture and to establish the 
scaling function and values for the critical 
exponents directly from the experimental 
data. We first focus on the temperature de- 
pendence and subsequently include the fre- 
quency dependence. 

Using the dc conductivity data collected 
for each sample, o(T,,x), we can test for the 
existence of a universal scaling function with 
Eqs. 2, 3, and 4 

Figure 2A was constructed using Eq. 5, with 
the data from the sample with the open circles 
in Fig. 1A representing the critical behavior, 
g(T,x,). If we consider only data with a 5 

5000(ohm . m)-', all the data on the metallic 
side of this sample collapse into one curve. 
Substituting as the critical set the data from 
samples just above or below this one does not 
produce such a collapse. Therefore we conclude 
that we have identified a sample that is very 
close to the critical concentration. From its con- 
ductivity we find 1, x and z = 2.T1l2 

A simple function describes the shape of 
the scaling function on the metallic side 

that is consistent with the expected limiting 
behaviors of Eq. 3 (illustrated by the upper 
dashed line in Fig. 2A). On the insulating 
side, the data can be collapsed to a single 
curve by dividing by the critical data set and 
attempting to combine into a single function 

and adjusting the value of < for each sample. 
The approximate form emphasizes the duality 
in g+(y) for y << 1. This exponential function 
usedto align the data sets (shown by the lower 
part of the dashed line in Fig. 2A) describes the 
collapsed data. The exponential function and 
Eq. 4 imply that the conductivity on the insu- 
lating side has a temperature dependence 
u(T,x) x TI1' e~p[-(T,lT)"~], which is similar 
to the Efros-Shklovskii variable range hopping 
conductivity formula that often describes the 
temperature dependence of the conductivity of 
disordered insulators deep in the insulating 
phase of disordered systems ( I  I). 

Both the values of u(,x,T = 0) (for metallic 
samples) and $/h<(x) (for insulating samples) 
vary linearly with the sample conductivity at 77 
K, o,, (Fig. 2B). Assuming that the high-tem- 
perature conductivity varies linearly with Nb 
concentration, this indicates that < depends on 
concentration, according to Eq. 2 with v = 1 on 

both sides of the transition. This value of v is in 
agreement with earlier results of the transport 
and tunneling measurements on Nb-Si alloys 
(12) conducted on the metallic side but is in- 
consistent with what is expected for a disorder- 
dnven transition with no interactions (the 
Anderson transition), where v ;= 1.35 according 
to scaling analysis of numerical simulations of 
the critical behavior (13). This is gratifying 
because our observation of the scaling itself 
emphasizes the importance of electron-electron 
interactions at the transition (I). 

Scaling theory also requires a close rela- 
tion between the effects on the conductivity 
of fluctuations sampled directly (by ho)  and 
those driven by thermal excitations (kBT). To 
test this idea with our data, we directly com- 
pared the T dependence for the three samples 
from Fig. 1B to their o dependence at 2 K (at 
which hw > kBT) (Fig. 3A). The frequency 
(in hertz) has been scaled by h/1.54kB and 
the critical sample shows both o ( T  = 0 ,o)  x 

o'/' and o ( T , o  = 0) 3: TIt2, which are in 
agreement with the predictions of quantum- 
critical scaling (8) .  

Continuing with scaling, we defined a 
new length scale lT,o = IT/x(fiwlkBT) and 
a scaling form for the real part of the 
conductivity 

The function X approaches 1 for h o  << kBT 
and approaches ( f i ~ l k ~ T ) " ~  for fio >> k,T, 
with a rapid crossover for hw ;= kBT. With this 
form of the scaling hypothesis, we are able to 
collapse the ac data from various temperatures 
onto the same curve (2) for all three samples 
from Fig. 1B (Fig. 3B). For the critical sample, 
the dc data may be used to determine I, = 

e21fiCT112where C = 475 (ohm mK'12)p' is a 
constant and hence we expect 2 = UICT"~ 
(Fig. 3B, top). For the sample on the metallic 
side of the transition, we may use Eq. 6 to find 
X = (u - u ~ ) I C T ' / ~ ,  =where o, 2900 (ohm 
m ) '  (from the low T limit of the 5-GHz data in 
Fig. 1B). Finally, for the insulating sample, we 
use the approximate form in Eq. 7 for g and 
solve for C in Eq. 8, giving 

where G,, = 0.03e21h is a constant. 
For low temperatures, the data for all three 

samples collapse onto a single curve, which 
is approximated by the real part of a complex 
expression (solid line in Fig. 3B) 

where a ;= 1.1 and b = 1.3. This indicates 
that Eq. 8 correctly describes the behavior of 
the conductivity, provided that the tempera- 
ture is less than 25 K and the frequency is less 
than 500 GHz. 
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Fig. 3. (A) Conductivity data for the metallic, critical, and insulating 
samples. The temperature dependence of the conductivity in the Low 
frequency limit (Lines, dc conductivity; solid connected symbols, 5 GHz; 
open connected symbols, 12 CHz) appears nearly identical to the fre- 
quency dependence for low temperatures (large symbols, millimeter 
wave radiation) when the frequency (top axis) is scaled by h/1.54kB. (0)  
Scaled ac conductivity data for the critical, metallic, and insulating 
samples. For Low temperatures, all collapse onto the same scaling func- 
tion Re [C(fiolk,T)]. The solid Line was calculated using Eq. 10 with b = 

Metallic Sample 
[ol- 2900 (nm)- l ] /  147.5 ( ~ r n K ~ / ~ ) - ~T " ~ ]  

1.3 and a = 1.1. 

The temperature-frequency correspondence 
(Fig. 3A) and the scaling results imply that on 
both sides of the transition, the interplay be- 
tween frequency and temperature can be de- 
scribed by the parameter I,,, which is con- 
trolled by the ratio hwlkBT as predicted by 
quantum-critical scaling. Using Eqs. 8 and 10 
with b = 1.3, we have I , ,  = /,for w << k,TIh 
and IT = (hwll.54kBT)1'2 for w >> kBTlh. 
Thus, for hw = 1.54kBT, law = I,,, which is 
consistent with the scaling between k,Tand fiw 
used to demonstrate the temperature-frequency 
correspondence (Fig. 3A). 

Our experiments imply the existence of 
simple scaling functions. From the length 
scale (L) dependence of the scaling function 
g+(L,  5) = 1 + LIS, we can independently 
determine the correlation length exponent 
from its derivatives v p l  = dpldlnglg~, 
where p = dlngldlnl and P(g,) = 0 de-
fines the critical value. We find P = 1 -
1 Ig, g, = 1 and discover that v must equal 1. 
We draw two conclusions: (i) the particular 
form of the scaling function that describes 
our data is consistent with the observed value 
for the correlation length exponent, and (ii) it 

is likely that the simplicity of the scaling 
functions we have found will not be a general 
feature of all QPTs. 

We have determined the scaling function 
and the critical exponents that govem the con- 
ductivity dynamics on both sides of a QPT in a 
disordered, interacting electron system. The fre- 
quency dependence of the complex conductivity 
establishes the quantum-critical nature of the 
transition at which electron-electron interactions 
remain nonzero and finite. We argue that the 
simple scaling functions are consistent with the 
specific values of the correlation length expo- 
nent as determined from the data. It remains to 
be seen whether the same formalism can also 
account for other dynamical experiments such 
as electric-field-dependent conductivity studies 
or wave-vector-dependent conductivity studies, 
which could reveal further relationships be- 
tween the temporal and spatial fluctuations. 
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