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in vitro system (3). Acetylation-dependent ac
cessibility may therefore require more-complex 
chromosomal substrates or remodeling activi
ties that are present in vivo but not yet repro
duced in vitro. We suggest a model for V(D)J 
recombination in which cis-regulatory elements 
direct access to RAG proteins in vivo by induc
ing the region- and developmental stage-spe
cific hyperacetylation of histone H3. 
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trophils and monocytes, facilitating immune 
complex clearance, and mediating cell lysis 
by the membrane attack complex (7). Com
plement can also bind and attack self tissues, 
especially in areas of active inflammation. In 
vitro studies have shown that cells are pro
tected from the deleterious effects of comple
ment by proteins that regulate complement 
activation (2). 

Three membrane-bound proteins regulate 
the activation of the third and fourth compo
nents of complement (C3 and C4) on the 

A Critical Role for Murine 
Complement Regulator Crry in 

Fetomaternal Tolerance 
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Complement is a component of natural immunity. Its regulation is needed to 
protect tissues from inflammation, but mice with a disrupted gene for the com
plement regulator decay accelerating factor were normal. Mice that were deficient 
in another murine complement regulator, Crry, were generated to investigate its 
role in vivo. Survival of Crry~'~ embryos was compromised because of complement 
deposition and concomitant placenta inflammation. Complement activation at the 
fetomaternal interface caused the fetal loss because breeding to C3~'~ mice 
rescued Crry~'~ mice from lethality. Thus, the regulation of complement is critical 
in fetal control of maternal processes that mediate tissue damage. 
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surface of murine and human cells (3). Decay 
accelerating factor (DAF) inactivates the C3 
convertase enzymes that activate C3. Mem- 
brane cofactor protein (MCP) serves as a 
cofactor for factor I-mediated degradation of 
activated C3 and C4. Crry, present only in 
rodents (4-6), regulates the deposition of 
activated C3 and C4 on the surface of autol- 
ogous cells in vitro by exhibiting MCP- and 
DAF-like activities, although its relative con- 
tribution to complement regulation as com- 
pared to mouse MCP and DAF has not been 
elucidated. 

Although decreased expression of com- 
plement regulatory molecules has been found 
in different inflammatory disorders (7), their 
specific contribution to pathogenesis is large- 
ly unknown. To investigate the role of com- 
plement regulation in vivo, we generated 
mice deficient in Crry by inserting a neomy- 
cin resistance gene that disrupted exon 5 of 
the mouse Crry gene in embryonal stem (ES) 
cells (8, 9). Three targeted ES cell clones 
with the expected homologous recombination 
were identified by Southern blotting (10). 
Two independently isolated cell clones were 
used to generate chimeric mice that subse- 
quently transmitted the mutant allele to their 
progeny. Heterozygous germ line mutants ap- 
peared healthy and fertile. 

Heterozygous animals were intercrossed 
to generate Crry null mice. However, no 
Crry-'- mice could be recovered from a total 
of 245 births, indicating that Crry deficiency 
resulted in embryonic lethality (Table 1). To 
determine the stage of lethality, we collected 
and genotyped embryos at various stages of 
development. At 9.5 days post coitus (dpc) or 
earlier, embryos with the expected frequency 
of the homozygous mutation were detected 
(-25%). In contrast, the percentage of ho- 
mozygous mutants declined progressively 
thereafter. In addition, most Crry-'- embry- 
os at 9.5 dpc had signs of developmental 
arrest, such as the smaller deciduae resem- 
bling those of earlier stages (Fig. 1, A and B). 
Decidua dissection revealed developmentally 
arrested, and sometimes deceased, embryos 
(Fig. 1, D through J). To confirm that the 
targeted mutation was a null allele, we stud- 
ied protein expression from primary fibro- 
blasts prepared from 13.5-dpc Crry-deficient 

Table 1. Genotype analysis of littermates from 
Cry+'- mating. Numbers in parentheses repre- 
sent the percentage of the total. 

Age Cry+'+ Cry+'- Cry-'- Total 

3weeksold 113 (46) 133(54) O(0) 246 
16.5 dpc 5 (56) 4 (44) 0 (0) 9 
13.5 dpc 19 (31) 40 (64) 3 (5) 62 
11.5 dpc 22 (33) 40 (61) 4 (6) 66 
10.5 dpc 21 (40) 26 (50) 5 (10) 52 
9.5 dpc 25 (28) 44 (49) 21 (23) 90 

embryos. In contrast to the wild-type control, 
staining with a Crry-specific antibody re- 
vealed that these Cry-'- fibroblasts did not 
express detectable Crry protein as determined 
by flow cytometry (8, 11). The insertional 
mutation therefore behaves as a null allele. 
These results suggest that Crry plays a crucial 
role during early embryonic development. 

To determine the role of Crry on this 
developmental defect, we first analyzed its 
expression pattern in wild-type early embry- 
os. Irnmunohistochemical detection of Cny 

in cryosectioned embryos indicated that Cny 
is highly expressed in trophoblasts as early as 
7.5 dpc, with little expression in the embryo 
proper (12). In addition, Crry is also ex- 
pressed in the maternally derived decidual 
tissues (Fig. 2A). This expression pattemper- 
sists in later stages of embryonic develop- 
ment (examined up to 16 dpc) (13). As ex- 
pected, there is no Crry expression in 
Cry-'-  trophoblast and embryos (Fig. 2B). 

Given that Crry has been implicated as a 
negative regulator of complement activation 

+I+ Fig. 1. Developmental 
arrest of Cny-'- em- 

(C and H) ~ k i d u a  dis- 
section to expose the 
yolk sac containing a 
10.5-dpc embryo, X I  
magnification. (I and J) A 
10.5-dpc embryo, x 2  
magnification. d, mater- 
nal decidua; ys, yolk sac 
[dashed areas in (D) and 
(H)]; em, embryos. 

- 
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and because we demonstrated that it is nor- 
mally expressed in embryonic tissue, we hy- 
pothesized that the developing Crry-I- em- 
bryos died from their inability to suppress 
spontaneous complement activation and tis- 
sue inflammation in the areas around the 
decidua and tr~~hoectoderm. To test this hy- 
pothesis, we compared the state of C3 acti- 

vation on Crry+'+ and Crry-I- embryos by 
staining with an antibody to mouse C3. In 
principle, native C3 is only present in soluble 
form, whereas activated C3 binds to the cell 
surface. In contrast to wild-type embryos 
(Fig. 2C), Crry-I- embryos had surface-de- 
posited C3 in the trophoectoderm and the 
ectoplacental cone. Thus, the lack of Cny 

was associated with abnormal activation and 
deposition of complement (Fig. 2D). 

To test if the spontaneous activation of C3 
was the major mechanism by which embryonic 
lethality is observed in the Crg-I- mice, we 
examined the effect of this mutation in a C3- 
deficient background (14). To this end, we 
generated compound mutant mice that were 
Cry+'- and C3-I- and subsequently inter- 
crossed them to generate mutants that were 

inflammatory reaction in the target tissue due 
to the recruitment and activation of granulo- 
cytes (2). To investigate if the absence of 
Cny initiated a similar reaction, we examined 
histological sections of 7.5- and 8.5-dpc em- 
bryos. In contrast to wild-type controls, 
Crry-I- embryos were extensively invaded 
by polymorphonuclear inflammatory granu- 
locytes in areas around the ectoplacental cone 
and the surrounding 'trophoectoderm (Fig. 3). 
Thus. failure to control com~lement activa- 

Fig. 2. Spontaneous complement activation in Crry-deficient embryos ( ~ 1 0  magnification). tion leads to an inflammatory response in the 
Staining of (A) Cry+/+ and (B) Cry-'- 7.5-dpc embryos with a rabbit antibody to mouse Crry ~ ~ ~ - 1 -  fetuses and, eventually, to embryon- 
(a-Crry) or (C) Cry+'+ and (D) Cry-/- embryos with an antibody to mouse C3 (a-C3). d, maternal ic demise. decidua; ec, edoplacental cone; ep, embryo proper; tr, trophoectoderm. 

It has been suggested that complement 
may be important in the reproductive system 
and in (16). our data indicate that 
complement regulation is indeed important in 
fetoplacental survival, maintenance of nor- 
mal pregnancy, and adequate reproductive 
h c t i o n  by maintaining a form of fetomater- 
nal tolerance against immunological mecha- 
nisms of tissue damage related to natural 
immunity. 

Our studies are also relevant to the possi- 
ble involvement of these molecules in patho- 
logic pregnancies, both in animals and in 
humans, in which complement is believed to 
be involved in the disease pathogenesis (1 7). 
Given that mouse Crry and human DAF and 
MCP control C3 activation by the same bio- 
chemical mechanisms in vitro (4-6), we pro- 
vide insight into the roles of the correspond- 
ing functional molecules in vivo that was not 
appreciated by in vitro analysis or by exam- 
ination of structural orthologs. Mouse DAF is 
not expressed in early embryos and tropho- 
blasts (13), and mouse MCP is exclusively 
expressed in the testes (18), thus leaving Cny 
as the critical regulator of complement acti- 

. .  . 

Fig. 3. Infiltration of polymorphonuclear cells in the extraembryonic tissues of the Crry-deficient vation during early murine embryonic devel- 

embryos. (A) Cry+/+ embryo and (B) Cry'- embryo at X I 0  magnification. (C) A X40 magnifi- Opment. These the dif- 
cation of the boxed area in (B). (D) A X I 0 0  magnification of the boxed area in (C). Arrows denote ference in phenotype of the Crry-deficient 
polymorphonuclear cells. d, maternal decidua; ep, embryo proper. embryos and mutant mice lacking DAF, in 
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which embryonic development is not affected 
(19). In contrast, DAF and MCP are heavily 
expressed in human placentas (1 6 ) ,and there 
is no direct human counterpart to Crry. Thus, 
human DAF or MCP should play a similar 
role as mouse Crry during early embryonic 
development by controlling effector com- 
ponents of natural immunity, in the form of 
complement regulation, to protect fetoma- 
ternal tissues from tissue inflammation and 
destruction. 
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Rad6-Dependent Ubiquitination 
of Histone H2B in Yeast 
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Although ubiquitinated histones are present in  substantial levels in  vertebrate 
cells, the roles they play in  specific biological processes and the cellular factors 
that regulate this modification are not  well characterized. Ubiquitinated H2B 
(uH2B) has been identified in  the yeast Saccharomyces cerevisiae, and mutation 
of the conserved ubiquitination site is shown t o  confer defects in  mitotic cell 
growth and meiosis. uH2B was not  detected in rad6 mutants, which are de- 
fective for the ubiquitin-conjugating enzyme Ubc2, thus identifying Rad6 as the 
major cellular activity that ubiquitinates H2B in  yeast. 

Modulation of chromatin structure by the 
posttranslational modification of histones has 
emerged as an important mechanism for reg- 
ulating chromosome function in eukaryotes. 
Although acetylation of the histone NH2-ter- 
mini has been shown to be intimately con- 
nected to transcriptional regulation, the bio- 
logical roles of other histone modifications 
remain obscure (1). A noteworthy modifica- 
tion is the conjugation of ubiquitin to the 
COOH-termini of the core histones H2A, 
H2B, and H3 (2). Ubiquitinated forms of 
these histones are stable in vivo, and their 
incorporation into nucleosomes has been pro- 
posed to alter chromatin structure locally (2, 
3). Although the precise cellular roles of his- 
tone ubiquitination are unclear, this modifi- 
cation has been correlated with increased 
transcriptional activity, replication, and mei- 
osis in higher eukaryotes (3, 4). 

Ubiquitin is transferred to target pro- 
teins in a reaction catalyzed by members of 
a large group of ubiquitin-conjugating en- 
zymes (Ubc's), which donate ubiquitin to 
the &-amino group of specific lysine resi- 
dues, often in a substrate-specific manner 
(5). Two evolutionarily conserved Ubc's, 
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Rad6lUbc2 and Cdc34lUbc3, are able to 
ubiquitinate histones in vitro without the 
mediation of an E3 ubiquitin ligase (6, 7). 
However, neither protein has been demon- 
strated to ubiquitinate histones in vivo, and 
the Ubc that targets histones in cells re- 
mains to be identified. Here, we present 
evidence that histone H2B is ubiquitinated 
in yeast. We also show that attachment of 
ubiquitin to this core histone depends pri- 
marily on the activity of Rad6iUbc2 and is 
required for both optimal mitotic cell 
growth and meiosis. 

It has been reported that Saccharornyces 
cerevisiae contains little, if any, uH2A or 
uH2B (8).We reinvestigated this issue using 
combined genetic and immunological ap-
proaches. Lysine-to-arginine (K --+ R) substi- 
tutions were introduced at the conserved 
ubiquitination sites of both H2A and H2B 
(9). A single K --+R substitution at L ~ s ' * ~  in 
H2B (htbl-K123R) was combined with four 
K + R substitutions at Lys1I9, Lys120, 
L ~ s ' ~ ~ ,  of H2A and L ~ s ' ~ ~  [htal-Kll9R, 
KlZOR, K123R, K126R (hereafter htal-4K/ 
R)] to eliminate the possibility that, in the 
absence of the preferred H2A ubiquitination 
site (Lys119), adjacent lysine residues 
(Lys120, L y ~ l ~ ~ ,  L y ~ l * ~ )could serve asor 
acceptors for ubiquitin conjugation. Strains 
that contained the fully mutant forms of H2A 
plus H2B (htal-4WR + htbl-K123R) were 
viable (9, 10) but showed pronounced mitotic 
and meiotic defects. The mitotic phenotype 
was characterized by a small colony size on 
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