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A H+-Gated Urea Channel: The 
Link Between Helicobacter 
pylori Urease and Gastric 

Colonization 
David L. Weeks, Sepehr Eskandari, David R. Scott, George Sachs* 

Acidic media trigger cytoplasmic urease activity of the unique human gastric 
pathogen Helicobacter pylori. Deletion of urel prevents this activation of cy- 
toplasmic urease that is essential for bacterial acid resistance. Urel is an inner 
membrane protein wi th  six transmembrane segments as shown by in vitro 
transcriptionltranslation and membrane separation. Expression of Urel in  
Xenopus oocytes results in  acid-stimulated urea uptake, with a pH profile 
similar t o  activation of cytoplasmic urease. Mutation of periplasmic histidine 
123 abolishes stimulation. Urel-mediated transport is urea specific, passive, 
nonsaturable, nonelectrogenic, and temperature independent. Urel functions as 
a Ht-gated urea channel regulating cytoplasmic urease that is essential for 
gastric survival and colonization. 

The Gram-negative pathogen H. pylori is 
unique in its ability to colonize the human 
stomach. H. pylori infection is acquired during 
childhood, persists lifelong if not eradicated, 
and is associated with chronic gastritis and an 
increased risk of peptic ulcer disease and gastric 
cancer (1).  An acid-tolerant neutralophile, H. 
pylori expresses a neutral pH-optimum urease 
to maintain proton motive force (PMF) and to 
enable gastric colonization (2). 

Most urease is found in the bacterial cvto- 
plasm, although up to 10% appears on the sur- 
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face, owing to cell lysis during culture (3).Sur-
face or free urease has a pH optimum between 
pH 7.5 and 8.0 but is irreversibly inactivated 
below pH 4.0 (4 ,5) .The activity of cytoplasmic 
urease is low at neutral pH but increases 10- to 
20-fold as the external pH falls between 6.5 and 
5.5, and its activity remains high down to pH 
-2.5 (5).Thus, cytoplasmic, not surface, urease 
is required for acid resistance. The unmodified 
urea permeability of the inner membrane is in- 
sufficient to suvvlv enough urea to intrabacterial . -
urease for urease activity to buffer the bacterial 
periplasm in the face of gastric acidity (the 
median diurnal acidity of the human stomach is 
pH 1.4). The data here show that H. pylori 
expresses a urea transport protein with unique 
acid-dependent properties that activates the rate 
of urea entry into the cytoplasm 
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The permeability of urea across phospholip- 
id bilayer membranes, 4 X cm s-' (6), is 
insufficient to saturate internal urease. At neutral 
pH, this rate of urea entry is not able to saturate 
intrabacterial urease even with 100 mM external 
urea. In acidic media, the apparent Michaelis 
constant K,,, of internal urease becomes equal to 
that of free urease, -1 mM (9, demonstrating 
an accelerated urea entry. The addition of 0.01% 
of the nonionic detergent C,,E8 permeabilizes 
the inner membrane, as shown by penetration of 
propidium iodide, without disrupting its mor- 
phology (Fig. 1). The urease of Cl,E8-treated 
intact organisms is fully active at neutral pH 
(intact bacteria, 0.25 + 0.1 pmol of urea per 
minute per milligram of protein; bacterial ho- 
mogenate, 2.76 + 0.27 pmol of urea per minute 
per milligram of protein; bacteria with 0.01% 
C12E8, 2.65 + 0.10 pmol of urea per minute per 
milligram of protein). Thus, an increase of urea 
permeability of intact H. pylon' accounts for the 
activation of cytoplasmic urease in acidic media. 

The urease gene cluster consists of seven 
genes. ureA and ureB encode the urease struc- 
tural subunits, and ureE, -F, -G, and -H encode 
accessory proteins necessary for Ni2+ insertion 
into the apoenzyme (7). urel encodes a mem- 
brane protein with homology to putative amide 
transporters such as AmiS, AmiS2, and ORFP3 
(8), and its absence impairs acid survival (9). 
UreI may be an acid-activated urea transporter 
crucial for acid resistance of H. pylod Its func- 
tion was determined in deletion mutants and by 
expression in Xenopus oocytes. 

In contrast to the large acid-induced in- 
crease in urease activity of wild-type organ- 
isms, no increase of activity in acidic medium 
was observed in the intact ureI mutant (IO), 
DW504UreI- (Fig. 2). However, urease activ- 
ity of detergent-treated urel- cells (3.0 + 0.25 
pmol of urea per minute per milligram of pro- 
tein) or cell lysate resulted in urease activity 
equal to that of wild-type organisms. The nor- 
mal level of urease shows that deletion of urel 
did not affect the expression of the downstream 
urease accessory genes essential for its biosyn- 
thesis. The mutation is therefore nonpolar. Ab- 
olition of acid activation of urease in intact 
organisms by urel deletion and 111 activation 
of intrabacterial urease by C12E8 suggest that 
UreI-mediated transport of urea determines the 

Fig. 1. Confocal fluo- 
rescent micrograph of 
H. pylon stained' using 
the LiveIDead method 
(Molecular Probes, Eu- 
gene, Oregon). (A) Be- 
fore C12E treatment. 
Green cofor is from 
staining with only SYTO 
9, a peimeant nucleic 
acid dye. ('B) After 
0.01% C12E, treatment 
Red stain shows the 
disrupted membrane E 
that allows entry of propidium iodide. 
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pH dependence of cytoplasmic urease. 
Because activity of the H. pylon cytoplasmic 

urease maintains an inward urea gradient, up- 
take does not need energy from adenosine 
triphosphate (ATP) or ion gradients. Measure- 
ment of passive urea uptake in prokaryotes, with 
their small volume-to-surface ratio, is precluded 
by the endogenous permeability of phospholipid 
bilayers. Oocytes have a volume-to-surface ratio 
several hundred times that of prokaryotes and 
express neither endogenous urea transporters 
nor urease activity (11). UreI was therefore ex- 
pressed in Xenopus oocytes by injection of urel 
complementary RNA (cRNA) (Fig. 3). Over 30 
min, urea uptake in UreI oocytes was accelerat- 
ed 6- to 10-fold at pH 5.0 compared with pH 7.5 
and was the same as in noninjected oocytes at 
either pH (12) (Fig. 4, A and C). Control oo- 
cytes equilibrated to the same level as oocytes 
expressing UreI, but required 48 hours to reach 
equilibrium as compared with 1 hour for urel- 
injected oocytes. No increase in internal concen- 
tration was found above the increase from 
equalization of the concentration gradient. Ac- 
cumulation was consistent with acid-dependent 
UreI facilitation of urea transport into the 0.4 to 
0.6 p1 of internal oocyte water space (13). 

UreI-dependent urea uptake was activated 
with a pH profile nearly identical to the pH 
activation profile of cytoplasmic urease in H. 
pylon (5). Half-maximal activation of transport 
occurred at pH -6.0 (Fig. 4B). Uptake was 
highly selective for urea, with only trace accu- 
mulation of I4C-thiourea (Fig. 4C) or I4C-man- 
nit01 (1.13 st 0.10 ahd 0.41 + 0.14 pmol per 
oocyte at pH 5.0, respectively). Uptake of 50 
pM I4C-urea was 15.28 st 0.27 and 13.61 + 
0.97 pmol per oocyte in the absence or presence 
of 100 mM unlabeled urea, respectively. Thus, 
saturation was not seen, even though a 2000- 
fold excess of urea was added (Fig. 4C). The 
addition of urea to voltage-clamped UreI-ex- 
pressing oocytes resulted in no change in 
current. An inward current of 117 nA is pre- 
dicted, if UreI were a proton- or cation-driven 
urea transporter with a stoichiometry of 1: 1 
(14). UreI-mediated urea uptake is therefore 
nonelectrogenic. 

Transport at pH 5.0 was temperature in- 
dependent between 15" and 30°C (Fig. 4D). 
This temperature insensivity and the lack of 

saturation of uptake suggest that, after H+ 
activation, urea fluxes through UreI with lit- 
tle interaction with the protein. Aquaporins, 
although also putative six transmembrane 
segment channel-like water transport pro- 
teins, show substantial tem~krature depen- 
dence (15). Our data suggest that UreI func- 
tions as a specific, H+-activated urea chan- 
nel. A channel mechanism would allow a rate 
of urea uptake adequate for saturation of 
internal urease at physiological gastric urea 
concentrations (1 to 3 mM). 

Western blot analysis detected the presence 
of UreI in purified inner but not'outer mem- 
brane fractions (Fig. 3). Periodic acid-silver 
staining detected carbohydrate (16) in the outer 
but not inner membrane fraction (1 7), confirm- 
ing the validity of the separation (18). UreI 
contains six hydrophobic sequences, H1 to H6. 
In vitro transcription/translation of various 
NH2-terminal lengths of UreI, fused to a gly- 
cosylatable COOH-terminal tag, was used to 

+ WT intact cells 

3 4 5 6 7 8 9 

PH..~I~ 

Fig. 2. Comparison of the pH profiles of cyto- 
plasmic urease activity in wild-type (WT) and 
Urel- H. pylori ATCC 43504 with that of urer 
lysate (n = 3) (22). pHmedium, pH of the medi- 
um. Error bars indicate 2 SEM. 

Fig. 3. Western blot analysis showing the ab- 
sence of Urel in the urel mutants and its pres- 
ence in the inner but not outer membrane of 
wild-type H. pylori, as well as in oocytes inject- 
ed with urel cRNA. TM, total membranes; IM, 
inner membrane; OM, outer membrane (23). 
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follow orientation of translation products in 
canine microsomal membranes (19). A signal 
anchor sequence translocates the COOH-termi- 
nus into the microsomal lumen (analogous to 
the bacterial periplasm), and a subsequent stop 
transfer sequence returns the COOH-terminus 
to the cytoplasmic side. Alternating signal an- 
chor and stop transfer sequences defined Fig. 
5A) the topography of UreI. 

The lack of a cytoplasmic retention signal 
in front of the first, hydrophobic sequence, 
HI, and the presence of two positively 
charged amino acids in front of H2 imply a 
periplasmic location of the NH2-terminus. 
The COOH-terminus of the UreNl construct, 
encoding Met1-LysZ3, was glycosylated, sig- 
nifying COOH-terminal "out" orientation 
(Fig. 5A). However, UreNlb, Met1-Lys2', 
had .a COOH-terminal "in" orientation be- 

R E P O R T S  

Fig. 4.'Uptake experi- 

cause of the additional positive charge (20). 
The product of UreN2, Met1-ThrS6, showed 
strong glycosylation indicating that H1 and 
H2 are a membrane-inserted pair with the 
NH2- and COOH-termini oriented "out." The 
translation product of UreN3, Met1-Arglo2, 
lost the glycosylation of UreN2. H3 acts as a 
stop transfer sequence, yielding a COOH- 
terminus "in" orientation. The glycosylation 
of the product of UreN4 translation, Met1- 
Leu12*, showed that H4 acted as a signal 
anchor, directing the COOH-terminus "out". 
The translation product of UreN5, Met1- 
L y ~ l ~ ~ ,  showed no glycosylation, with' H5 
acting as a stop transfer sequence, whereas 
the product of UreN6, Met'-Va1195, was gly- 
cosylated. H6 therefore behaved as a signal 
anchor. Hence, the inner membrane protein, 
UreI, has six transmembrane-inserted seg- 

ments in urel-injected ' 
and control Xenopus 
oocytes (n = 5 to  7). 
(A) Equilibration of -c ~ml-~nlected, PH 5 s 
50 p M  14C-urea at -+  on-~npcted, p~ 7 5 

8 I* 

pH 5.5 and 7.5. (B) 
Uptake of 50 p M  14C- 

-A- Nonn]ec(ed, pH 5 5 / :I2'! g 7.5 
urea in urel-injected lo - - 
oocytes as a function 

0 

of pH of the medium. - k 5 -  
(C) Uptake of 50 p M  0 z 

14C-urea or uptake of !. 2.5 - 
50 p M  14C-thiourea 3 

at pH 5.0 and 7.5 in 

B 

Fig. 5. Topography of 
Urel. (A) SDS-poly- 
aoylamide gel electro- 
phoresis analysis of 
products resulting from 
in vitro transcription1 
translation of succes- 
sive UrelN-terfH *,K+- 
ATPase P-subunit fu- 
sion constructs con- 
taining one to six of 
the hydrophobic se- 
quences of Urel, with (+) or without (-) microsomes. Glycosylation (arrow) is 
detected by a 12.5-kD shift in the translation product. (B) Two-dimensional model 
of Urel from in vitro translation results (25). Arrow, histidine 123. 

the presence of ex- 
cess unlabeled urea. 
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ments, with both NH2- and COOH-termini 
located in the periplasm (Fig. 5B). 

The apparent pK of UreI activation im- 
plies protonation of one or more periplasmic 
histidines for activation of urea transport. 
Histidine 123, located at the boundary of H4, 
was mutated to arginine or glycine (21). Ex- 
pression of UreI was unaffected by this mu- 
tation, but acid activation of urea uptake dis- 
appeared (1.83 + 0.20 pmol per oocyte at pH 
5.0 versus 1.75 + 0.34 pmol per oocyte at pH 
7.5). The protonated state of this histidine is 
important for acid activation of transport. 

Acid survival of prokaryotes depends on 
the maintenance of suitable levels of cyto- 
plasmic and periplasmic pH to maintain their 
PMF. Helicobacter pylori survives between 
pH 4.0 and 8.5 in the absence of urea and 
grows between pH 6.0 and 8.0 (2). A neutral 
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REPORTS 

pH-optimum urease must be shielded from 
gastric acidity and prevented from being active 
at neutral pH to avoid lethal alkalinization (5). 
Urea transport via UreI allows the internal ure- 
ase of H.pylon to generate ammonia in an acid 
environment, buffering the penplasm. This al- 
lows the organism to survive and grow in the 
stomach in the presence of usual gastric urea 
concentrations. The absence of transport by 
UreI at neutral pH prevents high urease activity 
in the absence of gastric acidity, as occurs 
during digestion. The combination of a high 
level of a neutral pH-optimum urease and an 
acid-regulated urea channel explains why H. 
pylon is unique in its ability to inhabit the 
human stomach. Effective inhibition of UreI 
would provide a means of eradcating the or- 
ganism in the normal, acid-secreting stomach. 
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Transmission of Vesicular 
Stomatitis Virus from Infected to 

Noninfected Black Flies Co-Feeding 
on Nonviremic Deer Mice 

Daniel C. Mead,'* Frank B. Ramberg,' David C. Besselsen,',* 
C. John are' 

Vesicular stomatitis is an economically important arboviral disease of livestock. 
Viremia is absent in infected mammalian hosts, and the mechanism by which 
insects become infected wi th  the causative agents, vesicular stomatitis viruses, 
remains unknown. Because infected and noninfected insects potentially feed on 
the same host in  nature, infected and noninfected black flies were allowed t o  
feed on the same host. Viremia was not  detected in  the host after infection by  
a black f ly bite, but because noninfected black flies acquired the virus while 
co-feeding on the same host wi th  infected black flies, it is concluded that a 
viremic host is not  necessary for an insect t o  be infected wi th  the virus. Thus 
co-feeding is a mechanism o f  infection for an insect-transmitted virus. 

Vesicular stomatitis is an arthropod-borne viral 
disease that primarily affects cattle, swine, and 
horses; it causes vesicular lesions on the mouth, 
coronary bands, and teats. Many species of 
wildlife and humans are also at risk. The caus- 
ative agents, vesicular stomatitis viruses 
(VSVs), are a group of antigenically related but 
distinct viruses of the genus Vesiculovin*~,fam-
ily Rhabdoviridae (1). 

Despite intensive study, aspects of the 
epizootiology of VSVs, including modes of 
transmission and endemic maintenance, remain 
largely unknown and hlghly controversial. The 
World Health Organization (WHO) definition 
of an arbovirus (2) implies that only vertebrate 
species that develop detectable viremia after 
infection are significant in the eyidemiology of 
these viruses and stipulates that vector infection 
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