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We reexamined the Late Cretaceous-early Tertiary apparent polar wander path 
for the Pacific plate using 27 paleomagnetic poles from seamounts dated by 
40Ar/39Ar geochronology. The path shows l i t t le motion from 120 t o  9 0  mill ion 
years ago (Ma), northward motion from 79 t o  39 Ma, and t w o  groups o f  poles 
separated by 16  t o  21  degrees w i th  indistinguishable mean ages o f  84 2 2 Ma. 
The latter phenomenon may represent a rapid polar wander episode (3 t o  10 
degrees per mill ionyears) whose t iming is no tadequately resolved w i th  existing 
data. Similar features i n  other polar wander paths imply that the event was a 
rapid shift o f  the spin axis relative t o  the mantle (true polar wander), which may 
have been related t o  global changes in  plate motion, large igneous province 
eruptions, and a shift in  magnetic field polarity state. 

An apparent polar wander path (APWP) pole, relative to a given lithospheric plate. 
shows past locations of Earth's spin axis, Although it is widely accepted that plate mo-
defined as the time-averaged paleomagnetic tion is the main cause of APW, drift of the 

spin axis relative to the mantle (termed "true 
~ o l a rwander" or TPW) is also a contributor. 
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TPW events may have occurred with rates 
exceeding plate velocities, leading to large 
shifts in paleogeographic zones (5). 

Numerous hot spots and rapid tectonic mo-
tions have left an unparalleled, 140-My record 
of plate motion relative to the mantle on the 
Pacific plate (6, 7). Consequently, Pacific pa-
leomagnetic data are important because they 
allow TPW to be measured using differences 
between the paleomagnetic and hot spot (man-
tle) reference frames [see review in (41. Pacific 
paleomagnetic data are atypical because it is 
difficult to acquire oriented samples, given that 
the ocean covers virtually the entire plate. 
Ocean drilling cores and studies of young is-
lands provide some data but are insufficient to 
delineate Pacific APW in detail. In conse-
quence, magnetic modeling has been used to 
calculate Pacific paleomagnetic poles, mainly 
by seamount magnetic anomaly inversion and 
determination of sea-floor magnetic lineation 
-asymmetry (skewness). Currently, the Pacific 
APWP is defined by 8 to 10 mean poles rang-
ing in age from Early Cretaceous to middle 
Tertiary (Fig. 1A) (9-11). 

We report a revised Late Cretaceous early 
Tertiary APWP determined from 27 Pacific 
seamounts dated by 40Ar/39Argeochronology. 
This analysiswas done because of the availabil-
ity of new and revised seamount data and dis-
crepancies between the acceptedPacific APWP 
and new data from other sources. For simplic-
ity, the analysiswas limited to seamount paleo-
poles because these are the predominant data 
for the time period. 

A 

Fig. 1. (A) Paleomagnetic poles and the Pacific APWP. Small 
filled circles denote seamount paleomagnetic poles with nor-
mal polarity; open circles, reversed polarity. Crosses denote 
poles from undated, reversed-polarity seamounts, possibly 
formed during Chron 33r (27). Open squares connected by 
heavy gray Lines show mean paleomagneticpoles defining the 

APWP (9-7 7). Ages (Ma) are given in italics, and surrounding ellipses are 95% confidence regions. Arcs Labeled "Detroit" (78) and "Wodejebato" (79) 
are paleo-colatitudes from Chron 33r-age ODP cores. (B) Pacific polar wander path (heavy line) derived from seamount paleomagnetic poles. Ages 
and confidence regions are shown as in (A): the eastern and western 84-Ma poles are denoted 84E and 84W. Filled circles show the predicted polar 
wander path, with points at 5-My intervals, derived from a plate versus hot spot motion model (7). TPW is the favored explanation of much of the 
difference between observed and predicted APWPs. 

www.sciencemag.org SCIENCE VOL 287 21 JANUARY 2000 455 



R E S E A R C H  A R T I C L E  

Paleomagnetic pole analysis. The shape 
and magnetic anomaly of a seamount can be 
measured from a surface ship and used to 
calculate a seamount's mean magnetization 
vector, which can in turn be used to calculate 
a paleomagnetic pole (12). Our reliability 
criteria were slightly more stringent than 
those of previous analyses because paleo-
poles from well-dated seamounts are more 
plentiful (13). In addition, we considered 
only seamounts with 40Ar13'Ar radiometric 
dates because this method produces the most 
reliable dates for altered submarine basalts 
(14). 

Twenty-seven seamount paleomagnetic 
poles (Table 1) were grouped by age and 
similar pole location into seven groups: 39 
million years ago (Ma), 66 to 79 Ma, 82 to 86 
Ma (two groups), 91 to 97 Ma, 102 to 108 
Ma, and 113 to 120 Ma. Mean pole positions 
were calculated using standard Fisher statis- 
tics with equal weighting for each pole (15). 
A mean age and standard deviation (Table 2) 
were calculated for each group using simple 
arithmetic averages (16). 

Pacific apparent polar wander path. 
Our APWP has similarities and differences 

relative to prior versions. Similar to pub-
lished Pacific APWPs (9-Il), the latest Cre- 
taceous and early Tertiary poles are near the 
0" meridian and trend northward, whereas 
older poles cluster near 60°N, 340°E (Fig. 
1B) and have overlapping confidence circles 
that imply slow polar movement. A major 
difference is that there is no pole in the 
location of the previous 81-Ma pole (Fig. 
1A). Inst-ad, the 82- to 86-Ma data produce 
two poles located 20.5" 2 2.5" (la)apart. 
Previously, this discrepancy was attributed to 
microplate rotations in the Musicians and 
South Hawaiian seamounts (17). We think 
that this interpretation is incorrect and that 
the two poles differ in age, with the western 
pole slightly older, and that there was a rapid 
shift in pole position. Because the two 84-Ma 
poles are the farthest apart of Cretaceous 
poles, a more conservative estimate of the 
polar shift is 16.3" ? 2.7", based on the 
distance between the eastern 84-Ma pole and 
the average of older poles [58.9"N, 337.4"E; 
A,, (the radius of the 95% confidence 
cone) = 3.5'1. The new APWP eliminates the 
discrepancy of the prior 81-Ma pole versus 
recent Ocean Drilling Program (ODP) basalt 

core data from Detroit Guyot at 81 Ma (18) 
and Wodejebato Guyot at 83 Ma (19) or a 
pole from Chron 33r (79 to 83 Ma) skewness 
(20)-all of which are consistent with the 
younger (eastern) 84-Ma pole (Fig. 1A). 

Although the two 84-Ma poles have indis- 
tinguishable ages, we think that the polar 
shift occurred just before Chron 33r, because 
all the 82- to 86-Ma seamounts have normal 
polarities and data from that reversed-polarity 
period are consistent with latest Cretaceous 
poles. Despite normal polarities, three of the 
82- to 86-Ma seamounts have ages within 
Chron 33r. These seamounts probably have 
dates that slightly underestimate their true 
ages. It is also possible that the two 84-Ma 
poles bracket the shift because poles from 
three reversely polarized seamounts, thought 
to have formed during Chron 33r (9, 10, 21), 
are midway between the two 84-Ma poles. 
These three poles were not included in our 
analysis because the seamounts are not radio- 
metrically dated. 

Is the polar shift an artifact? Although 
seamount poles are probably not as reliable as 
standard paleomagnetic data, the 84-Ma polar 
shift is not readily explained by seamount 

Table 1. Paleomagnetic (Paleomag.) and age data. For seamounts with poles calculated by seminorm inversion (12), the 95% confidence (conf.) ellipse 
calculated by least squares inversion (12), the CFR is the ratio of the sum of dimensions Maj and Min are the major and minor semiaxis lengths; Az is the 
field values divided by the sum of residuals. For seamounts with poles azimuth from north of the major semiaxis. 

Seamount 
name 

Location 

O N  "E 

Paleopole 

"N O E  

95% conf. ellipse 
CFR 

Maj Min Az 

Age (Ma) 
t S l o  

Reference 

Paleomag. Age 

Radiometric dates 
Abbott 6.6 
Stanley 4.7 
Paumakua 6.8 
Wageman 3.1 
Haydn 3.3 
Mendelssohn-E 9.7 
Mendelssohn-W 12.9 
Khatchaturian 5.3 
Kapsitotwa 10.1 
Schumann-W 13.8 
Nagata 9.2 
Liszt 6.6 
Cross 4.2 
Rachmaninov 2.5 
H I 1  9.2 
Wilde 7.1 
Mahler 6.7 
Makarov 2.9 
Miami 6.5 
Scripps 11.1 
Golden Dragon 5.6 
lsakov 4.2 
Mij-Lep (Heezen) 3.4 
Winterer 4.1 
Lo-En 3.0 
Takuyo-Daisan 4.3 
Daiichi-kashima 3.1 

Polarity dates 
C6 2.0 
Kona 55 2.9 
Show 6.2 
Chatauqua 9.7 

'Reversed polarity. 
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modeling errors. One possible error is the uniform magnetization (25). There should 
result of induced or viscous magnetization in be no consistency among heterogeneities in 
the present field direction, combined with the different seamounts, so their effect should 
remanent magnetization that was acquired be random pole scatter. The mean standard 
during volcanic emplacement (22). Measured error of dated seamount poles relative to 
induced magnetizations from seamount rock the mean pole positions is only 5.6" (26), 
samples are 10 to 25% (23), implying chang- and because the two 84-Ma poles are sta- 
es of 2" to 6" in the pole location for Pacific tistically different at the 99.9% level (27), 
seamounts. Although a few seamounts have it is unlikely that these two groups are a 
poles that imply larger bias, most mean sea- result of random errors. 
mount poles closely agree with other paleo- Late Cretaceous shifts in other appar- 
magnetic data (10). More important, the shift ent polar wander paths. Similar Late Cre- 
is nearly perpendicular to the direction in taceous polar shifts are observed in other 
which induced and viscous magnetization APWPs. To compare the direction of polar 
would bias the poles (24). movement in different APWPs, we removed 

Another problem is inaccuracy caused the effects of plate motions by examining the 
by violation of the modeling assumption of APWPs in their hot spot reference frames 

Table 2. The seven groups of mean paleomagnetic poles and their ages. A,, is the radius of the 95% 
confidence cone; k is Fisher's concentration parameter. 

Location 
ID N 4 5  k Age (Ma) 2 SD 

"N O E  

Fig. 2. Comparison of APWPs, with plate motion relative to the hot spots removed. Ages and 
confidence regions are shown as in Fig. 1. Upper plot: Pacific APWP. Lower left plot: Two global 
polar wander paths. Open triangles with a dashed line show APWP of (4);filled squares connected 
by a solid line show APWP of (3). For both, typical 95% confidence circles have radii of 4" to 6O. 
Lower right plot: North America poles showing rapid shift during Chron 33r. Abbreviations [see (29), 
and references therein]: AM, Adel Mountain; EL, Elkhorn Mountains; MK, mid-Cretaceous reference 
pole; ML, Maudlow Formation; PA, Paleocene reference pole. Shaded gray arrows show the sense 
of the polar shift in each plot. 

(28). The Pacific plate displays rapid polar 
shift toward -160" longitude (Fig. 2). The 
North American plate shows a similar shift of 
13" that coincides with Chron 33r (29) (Fig. 
2). Synthetic global average APWPs (3, 4) 
also display rapid polar movement in a direc- 
tion close to that of the Pacific APWP, al- 
though the timing is not precisely the same, 
probably because these composite APWPs 
were smoothed with 20- and 30-My moving 
windows. APWP similarities in different 
parts of the globe imply that the Pacific polar 
shift is a real and global phenomenon with a 
consistent direction in the mantle reference 
frame. 

What caused the polar shift? A shift in 
paleomagnetic poles can be caused by three 
phenomena: (i) plate motion; (ii) rapidly 
changing long-term, nondipole, geomagnetic 
field components; and (iii) TPW. Of these, 
TPW is most consistent with the observa- 
tions. TPW should have a consistent direction 
measured from all parts of the globe, so 
similarities in timing and direction of the 
APWP shifts (Fig. 2) are a strong argument 
for TPW. Plate motion is an unlikely expla- 
nation because the rotation required to ac-
count for the polar motion would have caused 
highly curved seamount chains on the Pacific 
plate or seamount chains that become young- 
er westward, neither of which are observed 
(Fig. 3) (30). Microplate rotation is also un- 
likely because seamounts from the two 84- 
Ma groups cannot be neatly divided into geo- 
graphically distinct regions that can be as-
cribed to simple block rotations. 

Nondipole field changes are also an un- 
likely explanation because the polar shift is 
inconsistent with studies of the time-aver- 
aged geomagnetic field, which show only 
small (<5 to 10% of the dipole), axial, 
nondipole components (3). The pole shift 
results in a declination change in the central 
Pacific and would require unexpectedly 
large nonaxial field components (for exam- 
ple, an equatorial dipole 36% of the 
strength of the axial dipole). 

Implications. The Pacific APWP indi-
cates a 16" to 21" pole shift in -2 to 5 My. At 
3" to 10" per My, this polar motion is far 
faster than the most rapid plate motions oc- 
curring today relative to the mantle (-0.8" 
per My) and similar to that proposed for a 
large TPW event at the beginning of the 
Cambrian (5). Because of the rapidity of the 
84-Ma shift, it is not well resolved in most 
APWPs owing to sparse data. Hence, other 
similar events may also be unrecognized. 

The 84-Ma TPW episode coincides with 
numerous tectonic events. At about the same 
time, plate reorganizations began in all ocean 
basins (31-33). From 85 to 90 Ma, several 
large igneous provinces [Kerguelen Plateau 
(34), Ontong Java Plateau (35), and the Carib- 
bean-Columbian Cretaceous Igneous Province 
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Fig. 3. Locations of seamounts 
used in this study and paleo- 
equator change implied by 
shift in 84-Ma poles. Filled 
(normal polarity) and open (re- 
versed polarity) circles show 
the locations of seamounts 
used in calculations; crosses 
show possible Chron 33r-age 
seamounts dated by magnetic 
polarity (27). Two transverse 
circular arcs show paleoequa- 
tor locations inferred from the 
two 84-Ma poles. Arrows show 
the sense of rotation (old to 
young). The longitudind circle 
is the locus of points that de- 
scribe potential rotation poles 
that would bring the two pa- 
leomagnetic poles (triangles) 
into coincidence. 

(36)] were erupting. Additionally, the geomag- lo. W. Sager and M. 5. Pringle.]. Ceophys. Res. 93.11753 
(1988). netic "Id began nveming at 83 Ma 

11. K. E. Petronotis and R G Gordon, Ceophys. j Int. 
after a long period of constant polarity. A pos- 139. 227 119991. .-.. -- , ---,- 
sible link is a mantle overturn event (37) that 12. Pacific seamount paleopoles have been derived using . , 

redistributed mass anomalies in the mantle two similar inversion methods that produce cornpa- 
rable pole estimates. Both solve for a magnetization 

(causing TPW)* initiated large that approximates the magnetic anomaly shape and 
plume eruptions, changed reversal frequen- amplitude given the measured seamount topography. - 
cy by modifying heat flux across. the core- The least squares method assumes a uniform mag- 

mantle boundarv. and caused a elobal  late netization and simply minimizes residuals between .. , " 
reorganization. observed and calculated anomalies [for example. 

M. L. Richards. V. Vacquier. G. D. Van Voorhis. Ceo- 
Another implication of the TPW event is phvsics 32, 678 (1967)l. The seminorm method cal- . - . ,. 

rapid latitude changes in various locales. culates a maximally uniform solution consistent with 

  hose effects would b e  most pronounced 90" 
from the TPW rotation axis, where the lati- 
tude shift would equal the 16" to 21" rotation. 
The Atlantic-bordering continents were in 
just that position. We calculate that the sites 
of Washington, D.C., and Dakar, Senegal, 
would have shifted south 15" to 20" (38). 
This raises the question of how these sites 
returned to their present latitudes. A different 
episode of TPW apparently occurred between 
81 and 43 Ma, and it moved the globe ap- 
proximately the same amount in nearly the 
opposite direction (11, 18, 39, 40). Together, 
these events suggest a broader TPW episode 
that spanned most of the Late cretaceous. 
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