
plasma membrane by co-immunoprecipita- 
tion assay. CD9 co-precipitated with anti- 
integrin a 6  antibody in lysates from both 
mouse eggs and F9 cells (Fig. 3D), indicating 
that CD9 physically associates with integrin 
a 6 p l  on egg plasma membrane, as shown in 
other cell lines (7). 

The integrin family provides a physical 
link between the extracellular matrix and the 
cell cytoskeleton and transduces signals, elic- 
iting changes in the intracellular pH, cyto- 
plasmic calcium level, phospholipid metabo- 
lism, protein tyrosine and serineithreonine 
phosphorylation, and expression of certain 
genes (21). Recent studies suggest that inte- 
grin-associated transmembrane proteins, in- 
cluding CD9 and TM4, may also participate 
in integrin-mediated signaling (22). We have 
shown here that CD9 associates with integrin 
a 6 p l  in eggs. Therefore, integrin a 6 p l  may 
transduce signals to CD9 and initiate, or oth- 
erwise promote, fusion. However, CD9 may 
directly function in membrane fusion. In sup- 
port of this possibility; it should be noted that 
some anti-CD9 or anti-TM4 antibodies block 
virus-mediated syncytium formations where 
the involvement of integrin is not clear (23). 

Our results show that CD9 is a crucial 
factor for mouse oocytes in fertilization. 
CD9-I- mice may serve to elucidate the 
precise mechanism of sperm-egg fusion and 
the role of CD9-integrin complex. 
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required for epidermal closure. Mutants for Src42A, a Drosophila c-src pro- 
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logical link between Src and INK. 

Genes that regulate cell shape changes in 
Drosophila are required for dorsal closure of 
the embryonic epidermis and thorax closure 
of the pupal epidermis (1). Mutations in 
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genes such as lze~nipterous (hep) and basket 
(bsk, also known as DJNK) result in abnor- 
mal embryos with a dorsal hole or abnormal 
adults with a dorsal midline cleft ( I .  2). Hep 
and Bsk are homologous to the mammalian 
MKK7 (MAPK kina; 7 )and JNK, and they 
are components of a MAPK (mitogen-acti- 
vated protein kinase) cascade (3). Although 
the '0; of the Hep-Bsk cascade during dorsal 
closure has been extensively studied, the up-
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stream trigger of this cascade is poorly un-
derstood. To identify'the trigger, we screened 
mutants showing the dorsal midline cleft phe-
notype, like a mild hep mutant (Fig. 1Ab). 
We found that the mutant for Src42A showed 
this phenotype and that Src42A regulates Bsk 
during Drosophila development. 

From our mutant collection of the P-ele-
ment-inserted semilethal lines, we identified 
one line, Jp45, that survived to adulthood but 
showed various degrees of the dorsal midline 
cleft phenotype (Fig. 1A, c to e). Excision of the 
P-element eliminated the semilethality and re-
stored the cleft phenotype. The P-element was 
inserted in the 5' untranslated region (UTR) of 
the Src42A gene, which encodes a Src-family 
nonreceptor tyrosine kinase (4-6). We used 
ethyl methanesulfonate (EMS) mutant screen-
ing to isolate two strong alleles of Src42A, 
,yrc42~Eland ,yrc42~m~r~ryIafionm w( ) (7 ) . In  
Src42AE', a stop codon at codon 483 eliminated 
the COOH-terminal part of the kinase domain 
of Src42A (8, 9). Src42AmYr'has a point muta-
tion in codon 2, which causes an amino acid 
substitution from Glf to Asp. Glf is con-
served in all members of the Src family and 
must be myristylated for localization of Src to 
the cellular membrane in mammals (10). 

tion. A mutation in hep or bsk dominantly 
enhanced the lethality and the phenotypic 
severity of Src42AJp4' homozygotes (Table 2 
and Fig. 1B). Conversely, reducing the gene 
dosage ofpuckered (puc), a gene encoding a 
phosphatase that inactivates Bsk (11), sup-
pressed the lethality and the severity of the 
cleft phenotype of Src42AJp4'. Thus, Src42A 
may function in the Bsk pathway during 
metamorphosis. 

Dorsal closure is the process in which a pair 

of epidermal layers elongates dorsally and hses 
at the dorsal midline of the embryo (I) (Fig. 
1Ca). This process is not completed in hep and 
bsk mutants, yielding a dorsal open phenotype 
(Fig. 1Cb). Strong Src42A mutants did not 
show the dorsal open phenotype but displayed 
the malformed mouth parts (Fig. 1Cc). This 
defect is similar to the defect in the embryo of 
the Tee29 mutant (Fig. 1Cd) (12). Tec29 is a 
Src-related nonreceptor tyrosine kinase and is 
regulated by SRC64, another Drosophila Src 

Table 1. Synergism of Src42A and Tec29 found in embryonic lethality. 

Genotype Embryonic lethality* 
(2SE) ( O h )  

Src42AE7/Src42AE7 75.7 (23.6) 576 
Src42AmyrilSrc42Amy* 50.0 (23.3) 908 
Te~29~O~Tec29~~~O 28.2 (23.0) 895 
Tec2gzo6S r ~ 4 2 A ~ y ~ ~ l T e c 2 9 ~ ~ ' ~Src42AmYri 105.8 (? 1.1) 1925 
Wild type 0.2 (20.2) 937 

*Percentage of embryonic lethality = (number of unhatched embryos X 400)l(total number of embryos). ?Total 
number of embryos is shown., 

Table 2. Effect of Tec29, hep, bsk, and puc mutations on Src42A mutant lethality. All crosses were 
performed at 18OC because the viability of S r~42AJp~~was reduced at 2S°C, the standard temperature. 

Genotype Viability ( 5 E )  (%) N* 
About 50% of the ~ r i 4 2 ~ " whomozygotes 
died before they hatched (Table I), and most ~ $ ~ ~ $ $ ~ ~ s r c 4 2 A J p 4 5  

2.81.1 (20.3)(20.3) 3465.51126.5
of the remainder died during the first-instar bsk~srC4~Jp45/+srC42AJp45 0.1 (?o.I) 1978 
larval stage. Therefore, Gly2 is required for S ~ ~ ~ ~ A J P ~ ~ J S ~ ~ ~ ~ A J P ~ ~ :,,U~69~+ 36.1 122.21 484.5. ,
development. Tec.2gM6S ~ C ~ ~ A J P ~ ~ I+'~rc42A~p~~ 0.0 1033 

Because adult Src42AJp4' phenotypes re- Src42AJP"l+ Sr~42AJp~~ 0.0 1589.5 
sembled that he^$ we that *The theoretically expected number (A!) of each mutant as a result of the crossing was determined from the number 
Src42A was involved in Hep and Bsk func- of phenotypically normal siblings. 

A class I class 11 class 111 Fie. 1. Adult and embrvonic ~ h e n o t ~ ~ e sof a 

Src42A- itv. (c) Class I, nearlv normal. (dl Class II. 

sbre &d the phenotypic rescue by activated 
DJun. (a) Wild-type. (b) bsk2. Arrowheads in (b), (e), and (f) mark the posterior.edge of the dorsal hole in the cuticles. Percentage of embyros 
in which the posterior edge of the dorsal hole extended posterior t o  the 50% length of the embryo is indicated. (c) A Src42AmYri homozygote. 
A similar mouth part defect was observed in Src42AE7.(d) T e ~ 2 9 ~ ~ ~ l T e c 2 9 ~ ~ ~trans-heterozygote. (e) Tec2g206S r ~ 4 2 A ~ Y ~ ~ J T e c 2 9 " ~ ~Src42AmYri. 
(f) Tec2gZo6Src42AmYri s e v E ( h s ) - D j ~ n ~ ~ ~ l T e c 2 9 ~ ~ ' ~Src42Amyri. A larger proportion of the embryos of this genotype had a small anterior hole, 
as shown. (g) Src42AmYri; S r~64~ ' .  
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homolog, during oogenesis (13). Thus, Tec29 introduction of a hep null mutation reduced the 
may be involved in the functiofi of Src42A. A amount of ectopicpuc expression (Fig. 2Ad). It 
mutation in Tec29 dominantly enhanced the is.known that Bsk induces expression of puc 
lethality of Src42AJp4' (Table 2). and decapentaplegic (dpp) during embryonic 

Furthermore, the Tec29 Src42A double dorsal closure (Fig. 2B, a and c) (2,11,14,15). 
mutant showed complete embryonic lethality The embryos of the Tec29 Src42A double mu- 
(Table 2), and a certain part of the dead tant did not show any puc or dpp expression in 
embryos showed the dorsal open phenotype the leading edge cells (Fig. 2B, b and d) (20). 
(Fig. Ice) (2). Activated DJun, a transcrip- These results indicate that Src42A, Tec29, Hep, 
tion factor downstream of Bsk (14, 15), par- and Bsk regulate dpp andpuc expression during 
tially rescued the dorsal open phenotype in embryonic dorsal closure. 
the Tec29 Src42A double mutant (Fig. 1Cf). To investigate the ability of Src42ACA to 
Thus, Src42A appears to regulate Bsk in the activate Bsk, we directly assessed the amount 
fusion of epithelial sheets during embryogen- of phosphorylated Bsk by immunoblot anal- 
esis and metamorphosis, and Tec29 is in- ysis (21). Forced expression of Src42ACA did 
volved in this regulation. We further ob- not affect the quantity of total Bsk protein 
served the double mutant for Src64 and (Fig. 2C, upper lanes) but induced more phos- 
Src42A. It manifested a mild but clear dorsal phorylated Bsk (Fig. 2C, lane 4) than the 
open phenotype (Fig. ICg), which suggests a controls. Thus, Src42A appears to regulate 
functional redundancy between Src64 and the phosphorylation level of Bsk. 
Src42A. During embryonic dorsal closure, the 

Expression of puc is known to be induced Hep-Bsk signal is required for elongation of 
by the Bsk signal (2,ll).  In the wing disc of the the leading edge cells (I). In the absence of 
wild-type third-instar larva, puc is expressed in the Bsk signal, these cells do not filly elon- 
the dorsal midline of the adult notum (Fig. 2Aa) gate (2). The accumulation of F-actin and 
(16). In the wing disc of the Src42AJp4' mutant, phosphotyrosine (P-Tyr) in leading edge cells 
puc expression was reduced (Fig. 2Ab). In con- is associated with the elongation of these 
trast, larvae with a constitutively activated form cells (Fig. 2D, a and c). Accumulation of 
of Src42A (Src42ACA) (1 7) showed ectopic these substances is disturbed in the DJun and 
expression ofpuc (18, 19) (Fig. 2Ac). Further, the puc mutants (11, 15). In the double mu- 

A Fig. 2 Regulation of 

,- , ,-, 
Src42Aa/+; 77&W4/+. (e)  on ;vhere 
71B-CAL4 (19) is expressed is visualized by 

d d  d a r e .  Expression of poc (a, b) (dorsal 

T i  S r m  Leading edge ceUs (arrows). puc and dpp ex- 
C 1 2 3 4  pression & d e t d  by X-gal staining &the 

W A L 4  + + + + puc-lacZ reporter (pUCE6q and in situ hybridiuation to dpp 

U A S - ~ ~ ~ ~ ~ A C A  + + 
mRNA, respdvely. (C) Phosphorykon of Bsk by the Src42A 

Heatshodc + + signal. Antibodies to JNKl and P-JNK crossreact with total Bsk 
protein (2) and phosphotylated Bsk protein (27), respective& 

MUJNKl I Lanes: 1 to 3, ccntt-01~; 4, in the presence of the W42A 
MtCP-JNK - W - n .  (D) Cell shape and F-aain (a and b) and P-Tyr (c and - 

D b) m u l a t i o n s  in h e  leading edge ceUs (arrowhead) of the 
m -- lateral epidermis of stage 14 embryos. Cell shape was o b s d  

~gdinl by phallddi*FlTC staining and P-Tyr antibody staining (a and 
c) Control. Leading edge cells dongated dorsally, and F-actin 
and P-Tyr accurnuhti& were seenin the cellular membranes. 1 (b and d) Tec- 5m4ZA"@/ T e 1 0  9~42A@. 

tant for Tec29 and Src42A, the leading edge 
cells contained reduced quantities of F-actin 
and P-Tyr, and these cells were only partially 
elongated (Fig. 2D, b and d). Thus, the defect 
in embryonic dorsal closure in the Tec29 
Src42A double mutant is caused by this'fail- 
ure in cell shape change, as is the case in the 
DJun mutant. 

We DroDose a model in which Src42A. - - 
upon re~eivin '~ an unidentified signal, acti- 
vates the Hep-Bsk pathway to regulate cell 
shape change and epidermal layer movement. 
This is consistent with the observation in 
mammals that c-Src regulates the cell mor- 
phogenetic and migratory processes and is 
known to activate JNK (22). As in Drosoph- 
ila, c-Src definitely affects F-actin organiza- 
tion and P-Tyr localization during cell mor- 
phogenesis (23). Therefore, Src regulation of 
JNK activity toward a change in cell shape 
may be conserved. 

It can be also interpreted that Src42A acts 
upstream of DFos (24), a dimerization part- 
ner of DJun. Although the Src42A, Tec29, 
and Src64 single mutants do not show a 
dorsal open phenotype (12,25,26), the DFos 
mutant clearly exhibits it. This relationship is 
also analogous to that in mammals. Both 
c-src and c-fos knockout mice had a similar 
defect, osteopehosis caused by reduced oste- 
oclast function. But the phenotypic severity 
was milder in c-src than in c-fos knockouts 
(27), which can be explained by the function- 
al overlap in multiple Src-family tyrosine 
kinases (28). Accordingly, in both Drosoph- 
ila and mammals, multiple nonreceptor ty- 
rosine kinases may cooperate to regulate the 
function of the JunRos complex. 
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