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Rice ( O y a  sativa), a major staple food, is usually milled t o  remove the oil-rich 
aleurone layer that turns rancid upon storage, especially in  tropical areas. The 
remainingedible part of rice grains, the endosperm, lacks several essential nutrients, 
such as provitamin A. Thus, predominant rice consumption promotes vitamin A 
deficiency, a serious public health problem in at least 26 countries, including highly 
populated areas of Asia, Africa, and Latin America. Recombinant DNA technology 
was used to  improve its nutritional value in this respect. A combination of trans- 
genes enabled biosynthesis of provitamin A in the endosperm. 

Vitamin A deficiency causes symptoms rang- than conventional breeding are required. 
ing from night blindness to those of xeroph- Immature rice endosperm is capable of syn- 
thalmia and keratomalacia, leading to total thesizing the early intermediate geranylgeranyl 
blindness. In Southeast Asia, it is estimated diphosphate, which can be used to produce the 
that a quarter of a million children go blind uncolored carotene phytoene by expressing the 
each year because of this nutritional deficien- enzyme phytoene synthase in rice endospenn 
cy (I). Furthermore, vitamin A deficiency (7). The synthesis of p-carotene requires the 
exacerbates afflictions such as diarrhea. re- complementation with three additional plant en- 
spiratory diseases, and childhood diseases zymes: phytoene desaturase and (-carotene de- 
such as measles (2, 3). It is estimated that 124 saturase, each catalyzing the introduction of 
million children worldwide are deficient in two double bonds, and lycopene P-cyclase, en- 
vitamin A (4) and that improved nutrition coded by the Icy gene. To reduce the transfor- 
could prevent 1 million to 2 million deaths mation effort, a bacterial carotene desaturase, 
annually among children (3). Oral delivery of capable of introducing all four double bonds 
vitamin A is problematic (5, 6 ) , mainly due required, can be used. 
to the lack of infrastructure, so alternatives We used Agvobacteriunz-mediated transfor- 
are urgently required. Success might be mation to introduce the entire p-carotene bio- 
found in supplementation of a major staple synthetic pathway into rice endospenn in a 
food, rice. with provitamin A. Because no single transformation effort with three vectors 
rice cultivars produce this provitamin in the (Fig. 1) (8).The vector pB 19hpc combines the 
endosperm, recombinant technologies rather sequences for a plant phytoene synthase (psy) 

originating from daffodil (9)(iVarcissus pseud- 
onarcissus; GenBank accession number 

'Institute for Plant Sciences, Swiss Federal Institute of X78814) with the sequence coding for a bacte- 
Technology. CH-8092 Zurich, Switzerland. 'University rial phytoene desaturase (crtI) originating from of  Freiburg, Center for Applied Biosciences, D-79104 
Freiburg, Germany. Eiwinia urerlol-ora (GenBank accession num- 

ber D90087) placed under control of the en- *These authors contributed equally t o  this work. 
+Present address: Agracetus Monsanto, 8520 Univer- dosperm-specific glutelin (Gtl) and the consti- 
sity Green. Middleton, WI 53562, USA. tutive CaMV (cauliflower mosaic virus) 35s 
:Present address: Paradigm Genetics, 104 Alexander promoter, respectively. The phytoene synthase 
Drive, Research Triangle Park, NC 27709-4528, USA. cDNA contained a 5'-sequence coding for a 
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mail: beyer@uni-freiburg.de (P.B.) and ingo.potrykus@ functional transit peptide ( lo) ,and the crtl gene 
ipw.biol.ethz.ch (I.P.) contained the transit peptide (tp) sequence of 
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Ctl p 

ktb b3 Ma M Ma b8 b9 hIO hlla hi3 I115 b17 WT pBI9hpcP--------------
a b a b a b a b a h a  b a b a b a b  n b a b  a b a b a b  

Restriction cnylam: a) I-sce l b) Kpn l Probe:psy 

ktb b 3  Ma W h6a M b9 h10 blla hl3 b15 b17 hWT pBl9hpcP------------- -
b a b a b a b n b a b a b a b a b a b a b  a b a b a b  

I. L 

l l i  

Restriction enzymes: a) I-sce1 b) Kpn l Probe:d 

Fig. 1. Structures of the T-DNA region of pB19hpc used in single transformations,and of 
pZPsC and pZLqH used in co-transformations.Representative Southern blots of indepen-
dent transgenic T,-~lants are given below the res~ectiveAarobacterium vectors. LB. Left 
border; ~ ~ r r i g h tb&der; "!",pobadenylationsign&; p, prorn&en; psy,phytoenesynthase; 
crtl, bacterial phytoene desaturase; icy, lycopene p-qclase; p,transit peptide. 

lu;y nos! 3- Ip acl has! RB 

zl d1 d b  110 zl lb 212 WT pZPK- - - - - - - -
kb a b a b  a b  r b a b a b  a b a b  

Ratliction enzymes: a) I-sce l b) Kpn l Pmbe: psy 

Rattiction an-: a) I-sce l b)Kpn l Probe: crtI 

pZLcyH 

LB3S! aphN 3 S p  35Sl Icy Ctl p RB 

el z4a d b  210 al lb 212 WT pZLcyH- - - - - - - -
. a b a b m b a b a b a b  a b a b  

Restriction enzymes: a) I-ser l b) Spr I Probe: lry 

the pea Rubisco small subunit (11). This plas-
mid should direct the formation of lycopene in 
the endosperm plastids, the site of geranylgera-
nyl-diphosphate formation. 

To complete the p-carotene biosynthetic 
pathway, we co-transformed with vectors 
pZPsC and pZLcyH. Vector pZPsC carriespsy 
and crtZ, as in plasmid pB19hpc, but lacks the 
selectable marker aphZV expression cassette. 
Vector pZLcyH.provides lycopene p-cyclase 
from Narcissus pseudonarcissus (12) (Gen-
Bank accession number X98796) controlled 
by rice glutelin promoter and the aphIV gene 
controlled by the CaMV 35s promoter as a 
selectable marker. Lycopene p-cyclase car-
ried a functional transit peptide allowing plastid 
import (10). 

Precultured immature rice embryos (n = 
800) were inoculated with Agrobacterium 
LBA44041pB19hpc. Hygromycin-resistant plants 
(n = 50) were analyzed for the presence of 
psy and crtI genes (Fig. 2). Meganuclease 
I-Sce I digestion released the -10-kb inser-
tion containing the aphZV, psy, and crtI ex-
pression cassettes. Kpn I was used to estimate 
the insertion copy number. All samples ana-
lyzed carried the transgenes and revealed 
mostly single insertions. 

Immature rice embryos (n = 500) were 

inoculated with a mixture of Agrobacterium 
LBA44041pZPsC and LBA44041pZLcyH. Co-
transformed plants were identified by South-
ern hybridization,and the presence of pZPsC 
was analyzed by restriction digestion. Pres-
ence of the pZLcyH expression cassettes was 
determined by probing I-Sce I-and Spe I-di-
gested genomic DNA with internal Icy frag-
ments. Of 60 randomly selected regenerated 
lines, all were positive for Icy and 12 con-
tained pZPsC as shown by the presence of the 
expected fragments: 6.6 kb for the I-Sce 
I-excised psy and crtZ expression cassettes 
from pZPsC and 9.5 kb for the Icy and aphIV 
genes from pZCycH (Fig. 1). One to three 
transgene copies were found in co-trans-
formed plants. Ten plants harboring all four 
introduced genes were transferred into the 
greenhouse for setting seeds. All transformed 
plants described here showed a normal veg-
etative phenotype and were fertile. 

Mature seeds from To transgenic lines and 
from control plants were air dried, dehusked, 
and, in order to isolate the endosperm, polished 
with emery paper. In most cases, the trans-
formed endosperms were yellow, indicating ca-
rotenoid formation. The pB19hpc single trans-
formants (Fig. 2A) showed a 3: 1 (colored/ 
noncolored) segregation pattern, whereas the 

pZPsCIpZLcyH co-transformants (Fig. 2B) 
showed variable segregation. The pB 19hpc 
single transformants, engineered to synthe-
size only lycopene(red), were similar in color 
to the pZPsCIpZLcyH co-transformantsengi-
neered 'for p-carotene (yellow) synthesis. 

Seeds from individual lines (1 g for each 
line) were analyzed for carotenoids by photo-
metric and by high-performance liquid chroma-
tography (HPLC) analyses (13). The carote-
noids found in the pB19hpc single transfor-
mants accounted for the color; none of these 
lines accumulated detectable amounts of lyco-
pene. Instead, p-carotene, and to some extent 
lutein and zeaxanthin, were formed (Fig. 3). 
Thus, the lycopene a(&)-and p-cyclasesand the 
hydroxylase are either constitutively expressed 
in normal rice endosperm or induced upon ly-
copene formation. 

The pZPsCIpZLcyHco-transformantshad a 
more variable carotenoid pattern ranging from 
phenotypes similar to those from single trans-
formations to others that contain p-carotene as 
almost the only carotenoid. Line zl lb is such 
an example (Fig. 3C and Fig. 2B, panel 2) with 
1.6 kglg carotenoid in the endosperm. Howev-
er, reliable quantitations must await homozy-
gous lines with uniformly colored grains. Con-
sidering that extracts from the sum of (colored1 
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Fig. 2. Phenotypes of transgenic rice seeds. Bar, 1 
cm. (A) Panel 1, untransformed control; panels 2 
through 4, pB19hpc single transformants lines 
h l l a  (panel 2), h15b (panel 3). h6 (panel 4). (B) 
pZPsUpZLcyH co-transformants lines z5 (panel 
I), z l l  b (panel 2), z4a (panel 3), z18 (panel 4). 

noncolored) segregating grains were analyzed, 
the goal of providing at least 2 pglg provitamin 
A in homozygous lines (corresponding to 100 
kg retinol equivalents at a daily intake of 300 g 
of rice per day), seems to be realistic (7). It is 
not yet clear whether lines producing provita- 
min A (p-carotene) or lines possessing addi- 
tionally zeaxanthin and lutein would be more 
nutritious, because the latter have been impli- 
cated in the maintenance of a healthy macula 
within the retina (14). 
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