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Communication Through a 
Diffusive Medium: Coherence 

and Capacity 
Aris L. Moustakas,'* Harold U. Baranger,',' Leon Balents,'s3 


Anirvan M. Sengupta,' Steven H. Simon' 


Coherent wave propagation in disordered media gives rise t o  many fascinating 
phenomena as diverse as universal conductance fluctuations in  mesoscopic 
metals and speckle patterns in  light scattering. Here, the theory of electro- 
magnetic wave propagation in  diffusive media is combined wi th  information 
theory t o  show how interference affects the information transmission rate 
between antenna arrays. Nontrivial dependencies of the information capacity 
on the nature of the antenna arrays are found, such as the dimensionality of 
the arrays and their direction wi th  respect t o  the local scattering medium. This 
approach provides a physical picture for understanding the importance of 
scattering in  the transfer of information through wireless communications. 

The ongoing communications revolution has 
motivated researchers to look for novel ways 
to transmit information (1, 2). One recent 
development (3, 4) is the suggestion that, 
contrary to long-held beliefs, random scatter- 
ing of microwave or radio signals may en- 
hance the amount of information that can be 
transmitted on a particular channel. Prompted 
by this suggestion, we introduce a realistic 
physical model for a scattering environment 
and analytically evaluate the amount of infor- 
mation that can be transmitted between two 
antenna arrays for a number of example cas- 
es. On the one hand, this lays a new founda- 
tion for complex microwave signal modeling, 
an important task in a world with ever-in- 
creasing demand for wireless communica- 
tion, and on the other, it introduces a new 
arena for physicists to test ideas concerning 
disordered media. 

From information theory (5 ) ,  the capac- 
ity of a channel between a transmitter and a 
receiver, that is, the maximum rate of in- 
formation transfer at a given frequency, can 
be described in terms of the average power 
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of the signal S and the noise N at the 
receiver: C = log,(l + SIN). More gener- 
ally (2) ,  the communication channel con-
necting several transmitters and receivers is 
described by a matrix GImgiving the am- 
plitude of the received signal cw due to 
transmitter i. The information carried by 
the channel can be characterized by using 
several quantities, such as the capacity or 
mutual information, which are typically 
functionals of the matrix G, which must be 
known in order to predict these quantities. 
Often G cannot be predicted for actual sys- 
tems, such as wireless communication net- 
works or optical fibers, because of the com- 
plicated scattering and interference of 
waves that are involved. It is crucial, there- 
fore, to develop physical models for the 
signal propagation, because it is only 
through such models that one can under- 
stand the real effects of scattering and in- 
terference on the amount of information 
that can be communicated. 

In many cases, only partial information is 
available for prediction; in these situations, 
one has only a statistical description of G. 
Instead of making assumptions about G di-
rectly, which is the usual procedure in infor- 
mation theory, we introduce statistical mod- 
els for the physical environment from which 
we derive the properties of G. The advantage 
of this procedure is that simple physical mod- 
els can yield very nontrivial properties of G. 
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Statistical descriptions of the environment 
have been quite successful in the physics of 
disordered media (6-9). The simplest of 
these is diffusive propagation. In our case of 
electromagnetic propagation in the context of 
wireless communication, diffusion is known 
to work well in various circumstances (lo), 
and simule extensions seem relevant for 
many others. From a diffusive approach, one 
finds the moments of the distribution of G. 
These will enable us to calculate information- 
theoretic quantities (for example, the capaci- 
ty) using a replica field theory approach to 
random matrix theory (11). Implicit in this 
approach is the assumption that the full dis- 
tribution of G is sampled, which is realistic in 
many real-world situations where the envi- 
ronment is changing. However, when the 
number of antennas is large, many quantities 
of interest become strongly peaked around 
their average and this assumption can be 
relaxed. 

In a statistical description, the scattering 
of the signal is characterized by the mean- 
free path, t, corresponding roughly to the 
distance between scattering events. When t is 
large compared to the wavelength A but small 
compared to the distance d between the two 
arrays, the wave propagation becomes diffu- 
sive (8, 9). This has been analyzed previously 
in the context of electron diffusion in metals 
(6, 7) and light propagation in solids (8, 12). 
In the case of wireless propagation, with sig- 
nals in the 2-GHz region, A - 10 to 15 cm, 
while C is on the order of meters for indoors 
and tens of meters for outdoors propagation, 
so diffusion is applicable. 

In the diffusive regime A << e,  to lead- 
ing order in hie, only the quadratic corre- 
lations (GIaG:Tp)are nonnegligible and 
therefore describe the system, where the 
brackets represent an average over realiza- 
tions of the disorder. Higher cumulants of 
G are of higher order in Ale. Therefore, the 
distribution of G is Gaussian with zero 
average (6-9). The leading term in 
(G,,G;J is evaluated by a summation of 
so-called ladder diagrams (8) correspond- 
ing to processes in (GLaGTp)where the 
waves from antennas i to cw and from j to p 
propagate through the scattering medium 
along identical paths except for segments 
of order t at each end. 

In several realistic situations discussed be- 
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low, the correlations take a particularly sim- 
ple form: 

Here RYp and T, are matrices describing the 
correlahons of the receiving and transmitting 
antennas, respectively, and S = Tr{GGt}ln, is 
the average power received at each of n, re- 
ceivers assuming independent signals from 
each of n, transmitters. R and Tare normalized 
such that T r i o  = n, and Tr{R} = n,. The 
factorization in Eq. 1 of the receiver and trans- 
mitter information reflects the dominance of the 
ladder terms: Only the segments near the an- 
tennas contribute a net phase, so only local 
information about the antennas is relevant. Fur- 
thermore, under general cir~umstances,~T can 
be expressed in terms of the response x,(k, 2) of 
antenna i to an incoming plane wave in direc- 
tion & with polarization 2 and a weight function 
w& 2) giving the hction of incident power in 
that direction with that polarization: 

(2) 
R is defined similarly. 

Having summarized the coherent d i f i -  
sion results that we will need, we now turn to 
considering information-theoretic quantities. 
While there are many such quantities that one 
could study with the diffusive techniques out- 
lined above, for concreteness we focus on a 
problem of relevance to wireless communi- 
cation applications (2-4, 13, 14). We assume 
that (i) the receiver knows G, but the trans- 
mitter does not; (ii) the noise at each receiv- 
ing antenna has the same power N and is 
Gaussian uncorrelated; and (iii) after a long 
time, the entire space of possible G matrices 
is explored as the environment changes, sub- 
ject to the statistical properties of Eq. 1. 
Under these circumstances, the maximum 
time-averaged information transfer rate is 
given by the so-called capacity, formally de- 
fined in (IS), given by (2-4) 

where I,,, is the n, X n, unit matrix and Q 
is the nonnegative-definite n, X n, covari- 
ance matrix describing the correlations be- 
tween the signals from the transmitter anten- 
nas. Here, the angled brackets again indicate 
an average over realizations of G with corre- 
lations defined by Eq. 1. With the normaliza- 
tion of G given above, the constraint on the 
maximum power transmitted yields the con- 
dition Tr[Q] 5 n,. For a fixed covariance Q, 
the maximum information transfer rate is giv- 
en by the same expression only without the 
maxe in front. Maximization over Q then 

gives the capacity of the channel. 
The assumptions (i) to (iii) given above 

are appropriate for certain real-world sys- 
tems, and have been previously studied (3, 4). 
Assumption (i) is appropriate if the transmit- 
ter occasionally sends known signais so the 
receiver can determine G, and if G changes 
slowly enough that the .channel needs to be 
probed only very occasionally. We also as- 
sume that the receiver cannot send informa- 
tion about G back to the transmitter. Assump- 
tion (iii), while necessary to make Eq. 3 
formally correct, is not too important in prac- 
tice for systems with a large number of an- 
tetlnas where the maximum information 
transfer rate for a given Q is strongly peaked 
about its average value (3, 16). 

An important implication of Eq. 3, recent- 
ly pointed out in (3, 4), is that if the environ- 
ment is sufficiently multipath, the capacity 
increases linearly with the number of anten- 
nas even when the total transmitted power is 
fixed, greatly exceeding the capacity of line- 
of-sight propagation. This 'result may seem 
surprising because scattering may reduce the 
received signal. However, the scattering also 
produces many independent paths that inter- 
fere at both the transmitter and receiver. This 
interference can be exploited by placing sev- 
eral antennas at both ends in order to increase 
the capacity. We now illustrate this dramatic 
result with a simple example. 

Consider the case of two antennas at each 
end and assume that a single scatterer (a 
mirror) is at some point between the two 
arrays (Fig. 1). Here and throughout this re- 
port the Fresnel limit will be assumed: The 
size of the transmitter and receiver arrays is 
much smaller than m. In the absence of 
scattering there is only line-of-sight propaga- 
tion. Due to the small effective aperture of the 

if SIN is reduced by scattering because this 
latter effect reduces the capacity only loga- 
rithmically. In order to derive their results, 
they assume that G is a random matrix with 
completely uncorrelated elements. Their sit- 
uation (fully uncorrelated matrix elements) 
corresponds to R and T being identity matri- 
ces in Eq. 1 so that the optimal Q in Eq. 3 is 
identity also. This yields, in fact, an upper 
bound on the capacity that can be realized 
only in very special circumstances. 

We now generalize the results of Fos- 
chini and Gans (3) to situations with non- 
trivial correlations (R and T not identity) 
that actually occur in real systems. The 
capacity (IS) defined by Eq. 3 with such 
nontrivial correlations has not been consid- 
ered previously. These correlations (non- 
trivial T and R) indicate some redundancy 
in both the transmitter and receiver arrays, 
thus reducing the capacity. 

Surprisingly, we find that the capacity 
(Eq. 3) can be evaluated analytically for a 
large number of antennas by using replica 
field theory extensively applied in statistical 
physics (11) once T and R are known (that is, 
given (G,,G?&). The result of this approach 
is a set of algebraic equations for the capacity 
in terms of the eigenvalues of R and T, which 
will be described in detail elsewhere. In con- 
trast, attempting to evaluate Eq. 3 numerical- 
ly by generating realizations of G with ap- 
propriate covariance would be quite difficult 
because one must then maximize over Q. 

We now analyze illustrative situations in- 
volving scattering media. The simplest case 
is when scalar waves are considered and the 
antennas are deep inside a uniform and iso- 
tropic scattering medium with a mean free 
path that is large compared to the size of the 
arrays. In addition, if we assume that the 

receiving array, it is impossible to resolve the antennas are ideal, making a perfect measure- 
different transmitting antennas. Thus, the ca- ment of the field at one point without distort- 
pacity is the same as if there were only one ing it in any way, then = exp(iko&. ri) 
transmitter and one receiver antenna, except (no 2 appears for scalar waves). Due to isot- 
that the noise level is reduced by a factor of 2 
because it is averaged over two receivers. 
Mathematically, this corresponds to G being 
a rank one matrix, indicating only one chan- , 
nel of communication. Including the mirror, 
the signal received is now the sum of the 
direct line-of-sight and the scattered ampli- 

' 

tudes. If the two incoming waves are at very 
different angles, then the aperture of the re- 
ceiving array is sufficient to resolve the two 
waves separately. It is thus possible to distin- 
guish the signa1s from the Fig. 1. Transmitter and receiver antenna ar- 
two transmitters. Now, G is of rank two, so rays in the presence of a single scatterer 
there are two nonzero terms (two channels) in (mirror). Electromagnetic waves interfere at 
Eq. 3, roughly doubling the capacity. both transmitter and receiver antennas. The 

~ ~ ~ ~ h i ~ i  and G~~~ argue (3) that for many presence of the scatterer introduces an addi- 
tional path of wave propagation between the scatterers, it is possible for two arrays and thereby additional interfer- 

rank (l4) such that the is pro- ence at both ends. As a result, the receiver 
portional to the number of antennas. An in- can resolve the individual signals from the 
crease in capacity can thus be obtained even two different transmitting antennas. 
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ropy, w(k) = 1, and thus using Eq. 2, we 
obtain Tij = f(kolri - rjl) and Rap = 

f(kolr, - rpl) with f(x) = sin(x)lx where 
ko = 2a/X and ri are the antenna positions. 
When the antennas are separated by multiples 
of X/2, all antennas of each array are on a 
straight line, there are no correlations, and R 
and T are unit matrices as assumed by Fos- 
chini and Gans. Any other configuration has 
nontrivial correlations and therefore lower 
capacity. 

An important consequence of the form of 
the correlation matrices is the scaling of the 
capacity with the number of antennas. In the 

limit of a large periodic array of antennas, the 
eigenvectors of T and R are plane-waves (by 
Bloch's theorem) so one can find the eigen- 
values analytically. When antennas are 
placed on a one- or two-dimensional array 
(Fig. 2), the capacity is proportional to the 
antenna number. However, when they are 
placed in a three-dimensional array, the ca- 
pacity scales as n2I3 up to a logarithm, not 
linearly. The model of a scattering medium 
discussed above gives an intuitive interpreta- 
tion of this result: A finite thickness of an- 
tennas on the surface is sufficient to resolve 
the incoming waves from the transmitting 

Fig. 2. Information ca- 6 
pacity per antenna 
(bits per second per 
Hertz) between iden- 5 
tical antenna arrays in ;5 
a uniform isotropic 5 
medium as a function g 4 
of the number of an- 
tennas, for three rep- E 
resentative situations. S! 3 
In all cases the nearest 3 
neighbor distance is 2 
Xl2, the signal to  1 2 noise ratio is 100, and 
we have considered 3 
scalar waves. (Top) 1 
Linear arrays of anten- 
nas. In this configura- 
tion the antennas are o 
completely uncorre- 5000 10000 
lated, yielding the Number of Antennas 
maximal capacity per antenna, Cln = 5.483 bps1Hz per antenna for this signal to  noise ratio. 
(Middle) Square arrays. The asymptotic value of the capacity per. antenna is predicted to be 4.43 
bps1Hz per antenna. The slow convergence of the capacity per antenna to its asymptotic value is 
apparent; this effect is due to the slow decay of correlations [ f ( x ) ]  of antennas at large distances. 
(Bottom) Cubic arrays. Here the capacity per antenna decays as n-'I3 up to log corrections 
because only the surface layer of antennas contributes to the information capacity. 

Fig. 3. Maximum infor- 5.5 
mation transfer rate per 
antenna (bits per second 
per Hertz) between two 
one-dimensional 50-an- 
tenna arrays with one 5 
placed deep inside a half- 
infinite diffusive medium : 
(with antenna spacing 3 
0.5X) and the other 5 
above it (with spacing 
0.6) at an angle 9 to the 
surface. Lower curve cor- g 
responds to the maxi- 
mum transfer rate for 
transmission signal co- 
variance Q, equal to ar 
Upper curve is the infor- 
mation capacity, opti- 
mizing over Q in Eq. 3. 
The signal to noise ratio 
is again 100, and scalar Angle BIZ 
waves are treated. Be- 
cause the scattered signal approaches the antennas from only one side (the diffusive medium), the correlations 
in the perpendicular arection cannot become destructive. a result, the correlations can be minimized only 
when all the antennas are ~ositioned at the same heieht from the surface. Thus, the maximum 5.478 b~s/Hz 
per antenna occurs at 9 =' 0, when the array is parakl to the surface dividing the diffusive region froh free 
space. As can be seen, optimization over Q becomes more important when 9 increases and there is higher 
antenna redundancy. 

antennas; additional antennas in the interior 
are redundant. Therefore the optimal Q is 
such that less power is transmitted from these 
interior antennas. 

As a second example we consider ideal 
dipole. antennas and vector electromagnetic 
waves. The average power propagating is the 
same as for scalar waves, because vectorial 
diffusion (nonzero spin) decays exponentially 
(12). The co~elation matrices are noy given 
by using xi(k, C) = (fli . 6 )  exp(ikok - ri) in 
Eq. 2, where fli is the polarization of antenna 
i. From the resulting expression, one fmds 
that if antennas are positioned on a straight 
line with polarization at an angle 0 = 54.73" 
(cos20 = i) with respect to that line, the 
correlations again vanish when antenna sep- 
arations are multiples of Xl2. In this case, 
then, the ideal situation of Foschini and Gans 
is again realized; however, for any other an- 
gle, correlations play a role even if the anten- 
nas are separated by half wavelengths. 

The simplest case in which the geometry 
of the environment is taken into account is a 
half-infinite diffusive three-dimensional re- 
gion without any scattering in the other half 
space (Fig. 3). This is a first approximation to 
modeling electromagnetic propagation in a 
city of high-rise buildings. When either of the 
arrays is close to the surface of the diffusive 
region, the correlations between antennas 
become qualitatively different. Specifically, 
when one antenna array is outside while the 
othfr is teep insjde the scattering medium, 
w(k) = (k - 2)O(k. 2) for the outside antenna 
array (for either scalar or vector waves) 
where 2 is the normal to the interface and O 
is the Heaviside step function. Surprisingly, 
the maximum capacity is achieved by point- 
ing the transmitter directly into the diffusive 
medium rather than at the receiver! 

We close by pointing out several simple 
extensions that make these methods applica- 
ble to a wide varietv of realistic situations. 
First, more realistic modeling of the scatter- 
ing medium could take into account scatterers 
that are not small compared to the wave- 
length. A concrete example is the scattering 
off walls inside a building where the scatter- 
ing is highly anisotropic (10). This case can 
be analyzed within our framework; however, 
the correlations no longer have the simple 
factorized form of Eq. 1. 

Second, more realistic antennas can be 
treated by simply inserting appropriate func- 
tions C) in Eq. 2. Even for nontrivial 
antennas, these functions can be either deter- 
mined numerically or measured experimen- 
tally. In this way, both practical antenna de- 
signs and the effects of antenna interactions 
can be included. 

Finally, we .can consider the case where 
the transmitter also has knowledge of G. In 
this case, the capacity will be greater. Here, 
the averaging over G occurs after optimiz- 
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ing over Q, a process known as "water-
filling" (2). This case can also be handled 
within our framework. 
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Dynamical Heterogeneities in 


Colloidal Hard-Sphere 

Suspensions 


Willem K. Kegel' and Alfons van ~laaderen',' 

The real-space dynamics in a model system of colloidal hard spheres was 
studied by means of time-resolved fluorescence confocal scanning microscopy. 
Direct experimental evidence for the presence of dynamical heterogeneities in  
a dense liquid was obtained from an analysis of particle trajectories in  two- 
dimensional slices of the bulk sample. These heterogeneities manifest them- 
selves as a non-Gaussian probability distribution of particle displacements and 
also affect the onset of long-time diffusive behavior. 

Many liquids can be transformed into a glass, 
a solid phase without long-range positional 
order, by cooling them rapidly below their 
freezing temperature (1, 2). The change in 
molecular relaxation processes upon ap-
proaching the glass transition continues to be 
the subject of much experimental and theo- 
retical work [for a recent review see (3)]. This 
change reflects the increase of correla-
tions of the particle movements upon ap-
proaching the glass transition. However, such 
relaxation processes are not only of inter- 
est from a fundamental viewpoint: The na- 
ture and time scales of these processes deter- 
mine the (kinetic) stability of a glass (relative 
to the crystalline state) and its mechanical 
properties. 

An important observation in many molec- 
ular glass-forming liquids is a nonexponential 
decay of (ensemble-averaged) time correla- 
tion functions [see (4) and references there- 
in]. Both computer simulation and indirect 
experimental evidence [for example, (5)] 
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suggest that a superposition of different re- 
laxation processes, or dynamic heterogeneity, 
underlies this nonexponential behavior. Mo- 
lecular dynamics simulations have given di- 
rect evidence for dynamical heterogeneities 
(6, 7), and a Monte Carlo simulation of hard 
spheres, which focused on three-time corre- 
lations of single particles (a),also indicates 
(albeit indirectly) that dynamical heterogene- 
ities occur. 

In recent studies on colloidal systems, the 
dynamics of tracer particles was investigated by 
optical microscopy (9) and by dynamic light 
scattering (10). In both studies, deviations of the 
displacement distribution fkction from Gauss- 
ian behavior were observed. However, dynam- 
ical heterogeneities were not observed directly 
in these experiments. Colloidal systems may be 
regarded as collections of "superatoms" in 
which the interaction potential can be tailored 
(11), for example, by changing the solvent qual- 
ity. During the past decade, they have also been 
used as model systems to study the glass tran- 
sition (12). 

Here, we investigated the nature of dy- 
namical heterogeneities for the simplest pos- 
sible experimental (model) system of inter- 
acting particles: hard colloidal spheres. We 
used fluorescent confocal scanning laser mi- 

Cx T T( where x is the transmitted vector and q is 
the noise vector. Thus, the channel is defined by 

P((CY)X) = p(C)pbliC.x)) where p(C) exp[-n,/ 
25 Tr(CT-TC'R-T)] gives C the proper statistics 
as defined by Eq. 1, and p(yl(C,x)) r exp( - l /  
2Nly - Cxl2) describes independent noise of 
average power N in each component of q. The 
capacity as shown in Eq. 3 is then the mutual 
information I({Cly);x) maximized over all possible 
p(x) transmitted. 
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croscopy to obtain time series of digital im- 
ages of the colloidal particles, in slices in the 
bulk of the sample. The data from these 
images enable us to address the question of 
how these heterogeneities are manifested in 
(real-space) correlation functions. 

Colloidal particles that could be observed 
directly by microscopy were developed in our 
laboratory. They are of a core-shell nature 
and can be matched for (mass) density and 
for refractive index (13). The particles consist 
of a core of silica with a fluorescent dye 
(fluorescein isothiocyanate) (14),  450 nm in 
diameter, covered with a large shell of poly- 
methylmethacrylate (PMMA) with a steric 
stabilizing layer (-10 nm thick) of 12-poly- 
hydroxystearic acid (PHs)  that is covalently 
linked to the PMMA (15, 1 6 ) .  The particles 
were dispersed in a mixture of tetralin, deca- 
lin, and carbon tetrachloride in which the 
particles are almost matched with respect to 
refractive index and density. In this solvent 
mixture, the diameter of the particles is 1.40 
p m  and the size polydispersity is -6%. This 
relatively large polydispersity inhibits crys- 
tallization (above the freezing volume frac- 
tion of 0.494) considerably: Months elapsed 
before crystallites formed. From the location 
of the coexisting fluid-crystal volume frac- 
tions and from light scattering studies. it 
could be concluded that the particles behave 
as hard spheres. This conclusion is corrobo- 
rated by the shape of the pair correlation or 
radial distribution function (see below) and 
by the independence of the location of the 
first peak on the volume fraction of the 
spheres. 

The volume fraction of the particles where 
no movement was observed (except for a few 
"rattlers," trapped particles that are not im- 
mobilized) was set at 0.66. This density co- 
incides with the volume fraction at random 
close packing of 6% polydisperse hard 
spheres (17). All volume fractions are de-
fined relative to this point. Because of the 
core-shell character of the particles. time-
dependent coordinates of their centers could 
be obtained with high accuracy using proce- 
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