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A mass imbalance exists in Earth for Nb, Ta, and possibly Ti: continental crust 
and depleted mantle both have subchondritic NbITa, NbILa, and TiIZr, which 
requires the existence of an additional reservoir with superchondritic ratios, 
such as refractory eclogite produced by slab melting. Trace element compo- 
sitions of minerals in  xenolithic eclogites derived from cratonic lithospheric 
mantle show that rutile dominates the budget of Nb and Ta in the eclogites and 
imparts a superchondritic NbITa, NbILa, and TiIZr t o  the whole rocks. About 
1 t o  6 percent by weight of eclogite is required t o  solve the mass imbalance 
in the silicate Earth, and this reservoir must have an Nb concentration 2 2 parts 
per million, NbILa 2 1.2, and NbITa between 19 and 37-values that overlap 
those of the xenolithic eclogites. As the mass of eclogite in the continental 
lithosphere is significantly lower than this, much of this material may reside in 
the lower mantle, perhaps as deep as the core-mantle boundary. 

The elements Ti, Zr, Nb, Ta, and rare earth 
elements (REE) are refractory and lithophlle 
and therefore should exlst m chondntic relative 
abundances In the slhcate Earth Continental 
crust and depleted mantle (DM) [mid-ocean 
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ridge basalt (MORB) source] generally are as- 
sumed to be geochemically complementary res- 
ervoirs within the Earth. However, both reser- 
voirs have subchondritic NbLa (1-4). A sim-
ilar observation is made about NbiTa ratios. 
These elements share the same valence state 
( + 5 )  and have matching atomic radii (5).and 
they are thought to be geochemically insepara- 
ble. However, recent analyses ( 6 )have demon- 

to determine their expected distribution among 14 
anatomically or physiologically defined categories. 
Chi-square analysis of type occurrences across cat- 
egories [M. Siegel and N. j .  Castellan jr., Nonpara- 
metric Statistics for the Behavioral Sciences 
(McGraw-Hill, New York, ed. 2, 1988)] yielded P = 

3.1 	 X lo -= ,  indicating that the probability of 
obtaining the observed synapse mapping randomly 
i c.- n~ol io ih lo"-o..o 

28. Model fitting of IPSCs at different voltages across Vrev 
yielded essentially identical synaptic parameters, in- 
dicating that local changes in [CI-] do not contribute 
to synaptic dynamics. Model fitting of IPSPs at dif- 
ferent membrane potentials yielded similar parame- 
ters, indicating negligible contribution of dendritic 
saturation and activation of nonlinearities. Near 
identical synaptic dynamics of divergent connections 
in different PCs, despite differences in IPSCllPSP am- 
plitudes, also indicated negligible contribution of 
nonlinear processes. 
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strated that NbITa ratios are subchondntic in 
MORB and near-ridge seamounts (7-9), ocean 
island basalts (OIB) (7, 10). and the upper 
continental crust (11, 12). Because Nb is more 
incompatible than Ta in clinopyroxene during 
mantle melting (13), the DM and the source of 
OIB should have even lower NbITa ratios. A 
third element ratio that also may not mass bal- 
ance in Earth is TiIZr. The continental crust, 
MORB, and OIB have TiIZr ratios below 1 15, 
the chondntic ratio (1). However. because Zr is 
more incompatible than Ti (13). partial melts 
should have lower TiIZr than their source re- 
gions and the mass imbalance in this case is not 
clear. The DM and OIB sources could have 
chondntic or even superchondritic TiIZr [as 
massif peridotites do (14)l. Nevertheless. the 
subchondritic TiIZr in MORB and continental 
crust suggests that another reservoir exists that 
is Ti enriched relative to Zr. 

The above observations requlre the exls- 
tence of an addlt~onal resenolr that contalns 
appreciable Nb. Ta, and TI wlth superchon- 
drltlc NblLa, NbtTa, and TlJZr-features 
that, untll now, have not been observed In 
common igneous and metamorphic rocks 
(15) .McDonough ( I )  suggested that refrac- 
tory, rutile-bearing eclogite may satisfy the 
mass balance requirements for Ti, Nb. and Ta 
in the silicate Earth. Here we show that 
eclogites, sampled in xenoliths from cratonic 
kimberlites, do indeed have the requisite 
trace element compositions to satisfy this 
mass imbalance. 

Rutile (TiO,) is a common accessory 
phase in metamorphic rocks and it can have 
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high concentrations of high field strength ele- 
ments, particularly Nb and Ta: For this reason, 
rutile has been considered by some to be the 
phase that is responsible for the marked Nb and 
Ta depletions seen in arc magmas (16). Rutiles 
from continental crustal rocks (1 7, 18) have Nb 
contents greater than 100 parts per million 
(ppm) with Nb/Ta ratios that generally cluster 
about the chondritic ratio of 17.4 -C 0.5 (19) or 
lower (20) (Fig. 1A). Metasomatic rutiles from 
cratonic peridotites (21, 22) are characterized 
by high Nb contents (0.3 to 0.5 weight %) and 
chondritic Nb/Ta ratios. In contrast, rutiles from 
eclogite xenoliths camed in kimberlite pipes 
from Siberia (23) and western Africa (24, 25) 
have more variable Nb contents and Nb/Ta 
ratios and many have Nb/Ta ratios that are 
chondritic to strongly superchondritic; the pop- 
ulation forms a log-normal distribution and has 
a geometric mean value of 24 (n = 19) (26). 

Although rutile is an accessory phase in 
the eclogites (27), it dominates the budget of 
Nb and Ta (28). Thus, the Nb/Ta ratio of the 
whole rock eclogite equals that of the rutile, 
and we can conclude that, on average, the 
xenolithic eclogites have superchondritic Nb/ 
Ta ratios. 

Determining the NbLa ratio of the eclogites 
is more difficult. Whole rock data are unreliable 
because of variable degrees of large-ion litho- 
phile element (29) enrichment produced by in- 
teraction with the host kimberlite (30). Thus, 
the preentrainment eclogite compositions must 
be calculated from primary mineral composi- 
tions and modes (31). This requires relatively 
precise knowledge of the modal abundance of 
rutiles, which cannot be determined from point- 
counting these coarse-grained rocks. We there- 
fore calculated modal rutile from Ti mass bal- 
ance (32), which yields proportions of 0.1 to 
0.9% by weight, with a relative error of 5 10%. 
The resulting NbLa of all but five of the re- 
constructed eclogites are superchondritic, with 
a geometric mean NbLa of 2.7 (n = 17) (26) 
(Fig. 1B). 

In a similar fashion we calculated the Ti/Zr 
ratio of the bulk eclogites. All but one of our 
samples have superchondritic ratios (Fig. 1C). 
These eclogites are thus distinct from MORB, 
continental crust, and OIB, which have sub- 
chondritic Ti/Zr ratios. Interestingly, this fea- 
ture is a result of Zr (and Hf) depletion in the 
eclogites rather than Ti enrichment; that is, on 
mantle-normalized plots, Ti is not anomalous 
relative to REE of similar incompatibility such 
as Eu and Gd, but Zr and Hf are distinctly 
depleted (relative to Sm and Eu). 

The above data demonstrate that xenolithic 
eclogites have, on average, superchondritic Nb/ 
Ta, NbLa, and TiZr ratios and thus support the 
contention that refractory, rutile-bearing 
eclogites may be important in the mass balance 
of Nb, Ta, and Ti in Earth. The mass of this 
reservoir is not easily constrained from the 
trace-element compositions of the eclogites, 

given the rather large standard deviations of 
Nb/Ta, %/La, and TiIZr observed for these 
samples. We have therefore calculated its mass 
as a function of the mass fraction of DM by 

m 10 Mean 
eclogite : 

0.1 CrUPt . 

Fig. 1. (A) Nb versus NblTa for a variety of rock 
types and model compositions: xenolithic 
eclogites (black dots), crustal igneous and meta- 
morphic rocks (open squares), and metasomatic 
peridotite xenoliths from Tanzania (pluses). Stars 
represent geometric mean (26) for the eclogitic 
and crustal populations. Field of MORB from (9). 
Diamonds, various estimates of bulk crust com- 
position (2); UC, field of upper crust derived from 
GLOSS (72), loess, and PAAS (77). Only three 
crustal rutile samples have NblTa significantly 
above the chondritic ratio and two of these are 
from a carbonatite complex (Magnet Cove, Ar- 
kansas) (20); the third is from a South Carolina 
beach sand deposit of unknown provenance. Ec- 
logite whole rock compositions are calculated 
from modal mineralogy (32); crustal and metaso- 
matic mantle whole rock compositions are caku- 
lated assuming that rutile makes up 0.5% of the 
rock and is the sole contributor of Nb and Ta to 
the whole rock budget. (9) Nb versus NbILa for 
reconstructed whole rock eclogites (solid circles), 
field of MORB, average continental crust (black 
squares on gray field), and OIB (triangles). Data 
sources are as listed for (A) and from the litera- 
ture. Star, geometric mean of the eclogite popu- 
lation. (C) Ti versus TiIZr for reconstructed 
eclogites (solid circles), field of MORB, continental 
crust, OIB, and Massif peridotites (open squares). 
Data sources are as listed for (A) and from the 
literature. Star, geometric mean of the eclogite 
population. 

using the A1203 contents of continental crust 
(2), primitive mantle (33), median worldwide 
eclogite (34), and DM, assuming that the DM 
contains between 80 and 95% of the A1,0, 
present in the primitive mantle. A1203 &as 
chosen for this calculation because it is the only 
major element that meets all of the following 
criteria: (i) its concentration is well defined in 
the continental crust, (ii) its concentration is 
markedly different between DM and eclogites, 
and (iii) it exhibits a relatively narrow range of 
variability in eclogites (34). An AI2O3 deficit 
exists in Earth if the DM is 40% or more of the 
mantle (Fig. 2A), a likely minimum proportion 
based on the concentrations of incompatible 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Mass fraction depleted mantle 

. . 
3.8 ~ ~ $ ~ G ~ z ? ~ ,  1 
3 .61  . . . f . . . 8 . . y 8 . . . f . . .  

0 2 4 6 8 1 0 
Eclogite reservoir (by mass) (%) 

Fig. 2. (A) Gray field shows the deficit in A1203 
that exists in the silicate Earth as a function of the 
proportion of DM. Calculated A1203 composition 
of the silicate Earth is derived from the sum of 
A1203 contributed from the DM, continental crust 
(CC), and primitive mantle (PM) (mantle that has 
not differentiated = 1 - Mcc - M,,, where M is 
mass fraction). Continental crust is assumed to 
contain 2% of the A1203 in the silicate Earth 
(0.0057 X 15.814.45); there is little variation in 
this value for different published estimates (2). 
The DM composition, which is more poorly con- 
strained, is allowed to vary from a moderately 
depleted composition with 95% of the A1203 of 
the primitive mantle to a strongly depleted com- 
position, containing 80% of the A1203 of the 
primitive mantle. Primitive mantle composition is 
from (33). (9) Gray field shows range of A1203 
contents in the silicate Earth needed to eliminate 
the A1203 deficit shown in (A), calculated from 
mass balance as a function of the mass of a 
refractory eclogite reservoir. In this cakulation, 
the mass of the DM is allowed to vary between 
50 and 80% of the silicate Earth. Moderately 
depleted and strongly depleted mantle composi- 
tions are as defined above. Intersection of the 
gray field with the A1203 content of the primitive 
mantle defines the upper and lower bounds on 
the mass of eclogite that might exist in the 
Earth-that is, between 0.5 and -6% by mass, if 
it accounts for the missing A120,. 
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Fig. 3. Composition of refractory eclogite reser- 
voir, calculated from mass balance (39), com- 
pared with the range of eclogite compositions 
reported here. Solid circles, individual eclogites; 
stars, geometric mean of xenolithic eclogite pop- 
ulation (26); curves, end member outcomes of the 
mass balance calculations; circles and pluses, re- 
sults assuming the eclogite reservoir represents 
6% by mass of the silicate Earth; triangles and 
diamonds, results assuming the eclogite reservoir 
represents only 0.5% by mass of the silicate 
Earth. A range of DM compositions were assumed 
(Nb in DM = 0.12 to 0.35 ppm), corresponding to 
the range of Nb contents calculated for the DM 
from representative MORB compositions, assum- 
ing 5 to 10% batch melting and bulk D values of 
0.0005 and 0.00028 (73). Other elements in the 
DM were calculated assuming NbILa = 0.9 (3) 
and Nb/Ta = 15.5 (7). Pluses and diamonds, 
moderately depleted mantle with 0.35 pprn of Nb 
(about half the concentration of the PM); circles 
and triangles, more strongly depleted mantle 
with 0.12 ppm of Nb (about 20% of the PM). 
Because the continental crust has a NbILa ratio 
significantly smaller than either DM or PM, the 
mass balance calculation for NbILa (A) is very 
sensitive to the mass of the crust. Increasing the 
crust's mass from 0.57 to 0.60% of the silicate 
Earth, results in a factor of 2 increase in the NbILa 
calculated for the refractory eclogite reservoir. 
For this reason, minimum bounds are shown for 
this reservoir by the gray box, which is considered 
the only robust constraint that can be placed on 
its NbILa composition [that is, the NbILa could be 
significantly higher than that depicted by the 
curves in (A) but not lower]. Because the NbITa 
ratio of the crust is not significantly different 
from the DM, the Nb/Ta calculations shown in (B) 
do not depend on crustal mass. 

elements present in the continental crust (2). 
The mass fraction of eclogite needed to com- 
pensate for this deficit ranges between 0.5 and 
6% of the silicate Earth, equal to or greater than 
the mass of the continental crust and approxi- 
mately equivalent to the mass of oceanic crust 
subducted through time (1, 35) (Fig. 2B). This 
mass overlaps that of the continental litho- 

Table 1. Parameters used to calculate refractory eclogite composition from mass balance. Numbers in 
plain type are input parameters for mass balance calculations; numbers in italics are derived from mass 
balance calculations. 

Mass fraction Al,O, Nb La Ta Nbl Nbl 
of silicate Earth (weight %) (ppm) (ppm) ( P P ~ )  La Ta 

DM 0.4-0.9 3.6-4.2 0.12-0.35 0.13-0.38 0.007-0.022 0.91 15.5 
Continental 0.0057 15.8 8.6 18 0.7 0.48 12.3 

crust (2) 
Primitive 0.03-0.59 4.45 0.658 0.648 0.037 1.01 17.5 

mantle (33) 
Refractory 0.005-0.06 15.8 >7.6* >0.75* >0.04* >7.78*19-37 

eclogite 
reservoir* 

*Concentrations of Nb and the NblLa ratio in the eclogite reservoir are highly sensitive to the mass of the continental 
crust because of its relatively high concentrations and large fractionation of NblLa relative to other reservoirs. For 
example, increasing the crustal mass by 5% causes a factor of 2 increase in the NblLa ratio in the eclogite reservoir in 
some cases. 

spheric mantle (1.5 to 2.5% of silicate Earth) (I, 
36) and, although these and other eclogite sam- 
ples originate from the lithospheric mantle, 
population studies of xenocrysts and xenoliths 
in kimberlites demonstrate that eclogite is a 
minor component of the continental litho- 
sphere, probably below 1 to 2% by volume 
(37). Thus, our estimates suggest that much of 
this eclogitic reservoir exists at deeper levels of 
the mantle, possibly in the lower mantle (38). 

Given the mass of refractory eclogite cal- 
culated above, some constraints on its trace 
element composition can also be obtained 
from mass balance calculations (39) (Fig. 
3A). The mean eclogite lies near the low end 
of the Nb concentration range of the calcu- 
lated eclogitic reservoir and within its range 
of Nb/La. In view of the large spread in 
concentrations and ratios observed in the 
eclogites, this agreement is good. Likewise, 
the range in NbITa ratios for the eclogites is 
large, but the mean eclogite falls within the 
range of Nb/Ta calculated for the missing 
reservoir (Fig. 3B). 

We propose that the eclogite reservoir forms 
a missing link between continental crust and 
DM. We envisage that fractionation of Nb from 
La and Ta (and possibly Ti from Zr) is pro- 
duced as altered oceanic crust transforms to 
eclogite, giving up a melt or fluid phase during 
subduction. During the Archean [when the 
eclogites we examined here are likely to have 
formed (40)] higher mantle temperatures result- 
ed in a thicker and more mafic oceanic crust 
that underwent dehydration melting upon sub- 
duction (41). The major and trace element com- 
positions of xenolithic eclogites are consistent 
with them being residues of tonalite-trondhjem- 
ite-granodorite production from a higher MgO 
oceanic crust (42). As Earth cooled, dehydra- 
tion melting of slab basalts in subduction zones 
may have given way to dehydration only. Be- 
cause the partitioning of Nb and Ta between 
fluid and rutile is extremely low (43), dehydra- 
tion should not fractionate Nb from Ta. Thus 
the Nb/Ta ratio of rutiles in Phanerozoic 
eclogites reflects that of their protolith. For 

example, if the rutiles are in metamorphosed 
MORB, their Nb/Ta should be low (7-9). 

Finally, a relevant question is whether the 
refractory eclogite reservoir, once transported 
into the deep mantle, is ever seen again. A 
number of persuasive arguments have been 
made for incorporation of recycled oceanic 
crust into the source regions of OIB (44). 
Although some OIB [particularly the HIMU 
family (45)] exhibit high Nb/La, they appar- 
ently do not have elevated Nb/Ta (10). This 
observation suggests that the amount of re- 
fractory eclogite in the OIB source is small. 
For example, if OIB are derived from sources 
that are mixtures of refractory eclogite and 
peridotite (DM or primitive mantle), 510% 
eclogite is able to dominate the Nb and Ta 
contents of the mixture, giving rise to super- 
chondritic Nb/Ta in the source. However, 
because recycled oceanic lithosphere is likely 
to contain both oceanic crust (now eclogite) 
and sediment, which will have high concen- 
trations of Nb and Ta and low ~ b / T a  (11,12), 
one expects to see a range of Nb/Ta in OIB, 
depending on the amount and nature of the 
recycled component in their source (one 
would predict HIMU to have high Nb/Ta and 
EM I (45) to have low Nb/Ta). Therefore, a 
search for systematics in Nb and Ta contents 
of well-characterized OIB offers an addition- 
al test of the importance of recycled oceanic 
lithosphere in the source regions of OIB (46). 
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