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Expression of Q205L Ga, (Go.,*), an alpha subunit of heterotrimeric guanine 
nucleotide-binding proteins (G proteins) that lacks guanosine triphosphatase 
(GTPase) activity in NIH-3T3 cells, results in  transformation. Expression of Gao* 
in  NIH-3T3 cells activated signal transducer and activator of transcription 3 
(Stat3) but not mitogen-activated protein (MAP) kinases 1or 2. Coexpression 
of dominant negative Stat3 inhibited Ga,*-induced transformation of NIH-3T3 
cells and activation of endogenous Stat3. Furthermore, Ga,* expression in- 
creased activity of the tyrosine kinase c-Src, and the &,*-induced activation 
of Stat3 was blocked by expression of Csk (carboxyl-terminal Src kinase), which 
inactivates c-Src. The results indicate that Stat3 can function as a downstream 
effector for Gao* and mediate its biological effects. 

Although downstream effectors that mediate 
the actions of G protein a subunits Gas, Ga,, 
and Gag  have been elucidated, little is known 
about signaling pathways activated by Gao. 
Expression of the GTPase-deficient (and thus 
constitutively active) mutant of Gao in which 
Gly205 is ?,anged to Leu (Gao*) in NIH-3T3 
cells results in transformation (I), but the 
molecular mechanisms underlying this phe- 
nomenon are not known. MAP kinases 1 and 
2 participate in stimulation of proliferation 
and transformation of NIH-3T3 cells (2). The 
transcription factor Stat3 is activated and re- 
quired for transformation of NIH-3T3 cells 
by the v-Src oncogene (3). Hence, the roles of 
MAP kinases and Stat3 in transformation of 
NIH-3T3 cells by Gao* were investigated. 

The Stat family of proteins is implicated 
in the functions of a wide range of cells (4). 
When activated. Stat3 becomes phosphoryl- 
ated, dimerizes. and translocates to the nucle- 
us, where it binds DNA and modulates gene 
expression. To determine the effects of Ga,* 
on the phosphorylation state of native Stat3. 
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we transiently transfected NIH-3T3 cells with 
a Gao* expression vector, extracted the pro- 
teins, resolved them by SDS-polyacrylamide 
gel electrophoresis (SDS-PAGE), and blotted 
them with antibodies specific for Stat3 phos- 
phorylated on Tyr705 (5).Expression of Gao* 
led to phosphorylation of Tyr705 on endoge- 
nous Stat3 proteins in NIH-3T3 cells (Fig. 
1A). Expression of Gao* did not lead to 
phosphorylation of Stat1 (6). To further de- 
termine if the Gao*-induced phosphorylation 
of Stat3 reflected an increase in Stat3 tran- 
scriptional activity, we did a transcriptional 
activation assay in cells transfected with a 
Stat3-responsive luciferase reporter construct 
( 7 ) .Expression of Ga,* resulted in activation 
of endogenous Stat3 (Fig. 1B). as evidenced 
by increased reporter gene expression. To 
determine that the reporter gene activity was 
in fact due to Stat3 activation, we coex-
pressed mutant Stat3 proteins that are not 
phosphorylated or fail to bind DNA and act in 
a dominant negative manner (3). Activation 
of Stat3 in cells expressing Gao* was inhib- 
ited by the coexpression of dominant nega- 
tive stat3 (Fig. 1B). Additionally. 

wi ld- ty~eGao Or protein P 
and y subunits had no effect on Stat3 activity 
(Fig. 1C). Expression of Ga,,* gave a small 
but consistent twofold increase ~n Stat3 ac- 
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tivity (Fig. 1C). Activation of Stat3 by Gaq* 
was varied (Fig. lC), and cell density appears 
to play a role in this activation; further work 
is being done. Thus, Gao* appears to activate 
Stat3 in a specific manner in NIH-3T3 cells. 

The role of MAP kinases 1 and 2 in cell 
oroliferation and transfolmation has been ex- 
tensively studied, and activation of these en- 
zymes can transform NIH-3T3 cells (2). Re- 
ceptor-mediated activation of Gao leads to 
increased activity of MAP kinases 1 and 2 in 
Chinese hamster ovary cells ( 8 ) .Therefore, 
we examined the effects of Gao* expression 
on MAP kinase activity in NIH-3T3 cells ( 9 ) .  
Expression of Ga,* did not activate MAP 
kinases 1 or 2 in NIH-3T3 cells (Fig. 2 ) , as 
measured by immunoblot analysis with anti- 
bodies that specifically recognize the active 
forms of MAP kinases 1 and 2, which are 
phosphorylated on Thr2"%nd Tyr"". Thus. 
the Stat3 signaling pathway and not the MAP 
kinase 1 and 2 pathway is activated by Gar ,*  
in NIH-3T3 cells. 

Expression of Gao* transfolms NIH-3T3 
cells and leads to colony formation in soft 
agar ( I ) .  Expression of dominant negative 
Stat3 inhibits transformation of NIH-3T3 
cells by v-Src but not transformation by H-
Ras (3). To test the hypothesis that activation 
of Stat3 is necessaly for transformation of 
NIH-3T3 cells by Gao*. we prepared trans- 
fected cells that expressed dominant negative 
Stat3 and Gao* and assayed colony forma- 
tion (10). Expression of dominant negative 
Stat3 inhibited Gao* transformation of NIH- 
313 cells (Fig. 3). Thus, activation of Stat3 is 
necessary for transformation of NIH-3T3 
cells by Gan*. 

Stat3 is activated in response to cytokines 
and is tyrosine phosphorylated by Janus ki- 
nases (JAK) (11). We found that expression 
of Ga,* did not activate JAK2 (6). However. 
Stat3 can also be directly phosphorylated and 
activated by c-Src or v-Src, which results in 
the proliferation and transformation of sever- 
al cell types (3, 12). Therefore. we tested 
whether Gao* activated endogenous c-Src. 
Gan* was expressed in NIH-3T3 cells. The 
cells were lysed. endogenous c-Src was im- 
munoprecipitated, and an in vitro kinase as- 
say was done with the immune complex (13). 
Expression of Gao* Increased endogenous 
c-Src actlvlty In NIH-3T3 cells (Flg 4A)  b e  
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then examined the role of endogenous Src in 
activation of Stat3 in response to Ga,* and in 
the transformation of NIH-3T3 cells. Csk 
inhibited activation of Stat3 in cells express- 
ing Ga,* (Fig. 4B). Furthermore, expression 
of Csk also significantly inhibited transfor- 
mation of NIH-3T3 cells expressing Ga,* 
(Fig. 4C). These data show that c-Src is 
activated in cells expressing Ga,* and that 
c-Src acts upstream of Stat3. 

The activation of Stat3 by a G protein 
a-subunit, leading to expression of the trans- 
formed phenotype, demonstrates a connec- 
tion between G protein and Stat pathways. 
What would be the biological relevance of 
such a connection? Most effects of Stat have 
been characterized in differentiated cells such 

cells, Stat-3 can trigger transformation (3). 
Proliferation and transformation of NIH-3T3 
cells can be induced by many stimuli. Indeed, 
signaling components that trigger transforma- 
tion in NIH-3T3 cells, when expressed in 
other cell types, can induce differentiation. 
One prominent example is the small GTPase 
Ras, which transforms NIH-3T3 cells but 
triggers neurite outgrowth in PC-12 cells 
(14), both effects being mediated by activa- 
tion of MAP kinases 1 and 2. Ga, is abun- 
dantly expressed in growth cones of neurons 
(IS), and expression of activated Ga, induces 
neurite outgrowth in PC- 12 and NE- 1 15 cells 
(16). Large amounts of c-Src are also found 
in nerve growth cones (1 7), and amounts of 

c-Src increase severalfold during neuronal 
differentiation (18). The molecular mecha- 
nisms involved in triggering of neurite out- 
growth are currently not known. Several sig- 
naling pathways have been implicated, in- 
cluding the MAP kinase pathways in the 
effects of NGF and the Stat pathway in the 
effects of interleukin-6 (IL-6) (19,20). Thus, 
it is possible that Ga, might also stimulate 
Stat3 transcriptional activity in differentiated 
cells such as neurons to regulate neuronal 
plasticity. 

It is unlikely that Ga, activation of c-Src 
and Stat3 represents the sole effector pathway 
of Ga, signaling. Studies from our laboratory 
show that wild-type Ga, directly interacts with 

as the effects of growth hormone, prolactin, 
and leptin. However, at least in NIH-3T3 Fig. 2. Activation of MAP kinases 1 and 2 in cells expressing 

Ca,*. Proteins from soluble cell lysates of NIH-3T3 cells 
treated with either 11-6 or PDCF or transfected with Ca,* 
were probed with antibody specific for phosphorylated MAP 

A kinases 1 and 2 on ThrZo2 and TyrZo4 (top) or antibody to 
P-MAPK * I MAP kinases 1 and 2 (bottom). 

Fig. 1. Phosphorylation 'and activation of Stat3 
induced by Q205L Ca,. (A) Soluble proteins 
from cell lysates of NIH-3T3 cells treated with 
11-6 or transfected with Ca,* were probed with 
antibody specific for phosphorylated Stat3 at 
Tyr705 (top) or with antibody to Stat3 (bot- 
tom). (B) NIH-3T3 cells transfected with the 
Ly6E Stat3-responsive luciferase reporter con- 
struct were transfected with either Ca,* alone 
or with Ga,* and dominant negative Stat3 
constructs VVV461-463AAAfEE434-435AA 
(DN 1) or Y705-F (DN 2). (Statistical differenc- 
es between the treatments were assessed with 
the Newman-Keuls test: P < 0.001; t, com- 
pared with control; tt, compared with Cia,*; n 
= 4 to 5 in duplicate transfections each time.) 
(C) Stat3 transcriptional assay performed as in 
(B). Cells were transfected with either Cia,*, 
wild-type (wt) Ca,, CP2y, Go!,,*, or Gag*. 
(Newman-Keuls test: P < 0.001; t, compared 
with control; n = 2 in duplicate transfections 
each time.) 

Fig. 3. Inhibition of Cia,* transformation of NIH-3T3 cells 
by dominant negative Stat3. Colony formation in soft agar 
was assayed with Ca,*-transformed cells that were co- 
transfected with either one of the two dominant negative 
Stat3 constructs. (Newman-Keuls test: P < 0.001; t. com- 

.Z 
pared with Ca0*:expressing cells.) The experiment was - 50 8 performed twice, with duplicate transfections each time. 

0 

. . 
Control ao* m* - + + 

Csk - + 
Fig. 4. Role of c-Src in activation of Stat3 in 
cells expressing Ga,*. (A) Endogenous c-Src C 150 
activity in NIH-3T3 cells expressing Ca,*. In 
vitro kinase assays of immunoprecipitated 
c-Src (t, t test, P < 0.01, n = 2 done in 3 100 
duplicate both times). C, control. (B) Stat3 3 
transcriptional activation assay as described in 'g Fig. 1B was done with NIH-3T3 cells expressing - 50 
either Ga,* alone or Ciao* and Csk. (Newman- 8 
Keuls test: P < 0.001; t, compared with control; 
i+, compared with Ga,*-expressing cells; n = 3 0 
in duplicate each time.) (C) Colony formation ao* + + 
in soft agar (Fig. 3) of Cia,*-transformed cells Csk - + 
also transfected with or without the Csk ex- 
pression plasmid (+, t test, P < 0.01). The 
experiment was performed twice, with duplicate transfections each time. 
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Rapl -GTPase-activating protein (Rapl -GAP) 
to modulate Rapl activity (21). Thus, Ga, may 
be able to engage several distinct signaling 
pathways to elicit its biological effects. 
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