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DNA Topoisomerase Ilp and  
Neural Development  

Xia Yang,'* Wei Li,'*t Elizabeth D. Prescott,'$ Steven J. Burden,' 
James C. Wang2 

DNA topoisomerase Ilp is shown t o  have an unsuspected and critical role in 
neural development. Neurogenesis was normal in  Ilp mutant mice, but motor 
axons failed t o  contact skeletal muscles, and sensory axons failed t o  enter the 
spinal cord. Despite an absence of innervation, clusters of acetylcholine re- 
ceptors were concentrated in  the central region of skeletal muscles, thereby 
revealing patterning mechanisms that are autonomous t o  skeletal muscle. The 
defects in  motor axon growth in  Ilp mutant mice resulted in  a breathing 
impairment and death of the pups shortly after birth. 

Murine DNA topoisomerase IIP (IIP) is a 
member of the type I1 DNA topoisomerase 
subfamily that mediates the passage of one 
DNA double helix through another (1).Yeasts 
and Drosophila possess a single type I1 DNA 
topoisomerase, which is indispensable for 
segregation of intertwined pairs of newly rep- 
licated chromosomes (2). In yeasts, the en- 
zyme also shares the function of DNA topo- 
isomerase I in relieving torsional and flexural 
strains in DNA. Simultaneous inactivation of 
DNA topoisomerases I and I1 severely affects 
DNA and ribosomal RNA synthesis and ar- 
rests cell growth irrespective of the stage of 
cell cycle (3). 

In mammals there are two closely related 
type I1 topoisomerases, IIa and IIP, encoded 
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by distinct genes (1).The IIa rather than the 116 
isoform appears to unlink DNA during chromo- 
some segregation. Cell lines expressing IIa but 
not IIP have been identified, indicating that IIP 
is dispensable in cellular processes (4). To de- 
termine the role of IIP in vivo, we disrupted the 
murine TOP2P gene according to standard pro- 
cedures (5). Two adjacent exons in one copy of 
TOP2P in embryonic stem cells. one of which 
contains the active-site tyrosine codon, were 
replaced by the neomycin-resistance marker 
(Fig. 1A) [see supplementary Web material (6) 
for details on targeting vector construction]. 
Germ line chimeras from blastocysts inject- 
ed with the mutated cells were then used 
to obtain heterozygous t o p 2 P + '  mice (5). 
Whereas top2P+'- mice are phenotypically 
indistinquishable from their wild-type (WT) 
littermates, homozygous top2P-'- embryos 
from intercrosses of the heterozygotes are 
dead at birth. Genotypying of a total of 194 
progeny from these intercrosses identified 46 
t o p 2 P p '  homozygotes among 50 perinatally 
dead pups, and none among the 144 surviving 
neonates. Analysis of mRNA from the liver 
of an embryonic day 18.5 (E18.5) t 0 p 2 P ~ ' ~  
embryo showed no detectable IIP transcript 
[Web figure 1 (6)], and antibodies specific to 
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IIP detected the protein in extracts of fibro- 
blasts from E13.5 WT but not top2P-'- em- 
bryos (7). Wild-type and top2P-'- embryos 
are comparable in size up to E15.5, but ho- 
mozygous mutant embryos show retarded 
growth thereafter; at E18.5 the average 
weight of top2P-'- embryos is -65% that of 
their WT littermates. The top2P-'- embryos 
also exhibit a curled appearence because of 
an abnormal curvature of their vertebral col- 
umns (Fig. 1B). Examination of the top2P-'- 
embryos showed no gross morphological ab- 
normality in major organs. These embryos, 
however, lacked spontaneous and tactile- 
stimulated movements. Their lung aveoli re- 
mained collapsed after birth, indicating that a 
respiratory failure is the most likely cause of 
their perinatal death. 

The failure of top2P-'- newborns to move 
or breathe suggested a defect in neuromuscu- 
lar function. The number of motor neurons or 
interneurons in WT and mutant embryos at 
E12.5 appears to be similar, as revealed by 
staining spinal sections with appropriate an- 
tibodies. Furthermore, in E12.5 top2P-'; em- 
bryos, sensory as well as motor neurons ex- 
tend their axons into the periphery; motor 
axons, specifically labeled by injecting DiI 
(1 ,I '-dioctadecyl-3,3,3',3 '-tetramethylindocar- 
bocyanine perchlorate) into the ventral spinal 
cord (8), project into the limbs by E12.5 and 
continue to grow further into the limbs by 
E13.5 [Web figure 2 (6) ] .  Thus, early aspects 
of motor neuron differentiation, including 
neurogenesis, appear normal in top2P-'- 
embryos. 

We studied neuromuscular synapses in 
top2P-'- embryos by staining whole mounts 
of diaphragm muscles with probes that allowed 
us to assess presynaptic and postsynaptic dif- 
ferentiation (9): a mixture of antibodies to neu- 
rofilaments (NF) and a synaptic vesicle protein 
synaptophysin (Syn) was used to stain axons 
and nerve terminals, respectively, and a-bunga- 
rotoxin (a-BGT) was used to stain postsynap- 
tic acetylcholine receptors (AChRs). In WT 

mice, motor axons branch and terminate ad- 
jacent to 'the main intramuscular nerve, re- 
sulting in a narrow, well-defined endplate 
zone in the middle of the diaphragm muscle 
(Fig. 2A). Presynaptic nerve terminals precise- 
ly overlie the postsynaptic membrane, which 
contains a high concentration or cluster of 
AChRs (Fig. 2A). 

In E l  8.5 top2P-'- embryos, presynap- 
tic nerve terminals and axons are absent 
from the diaphragm muscle (Fig. 2A). Sim- 
ilar results were obtained by staining lon- 
gitudinal sections of limb muscles from 
mutant embryos (7). We considered the 
possibility that early motor axons failed to 
reach their skeletal muscle targets or that 
these axons contacted muscle and subse- 
quently withdrew. Staining of whole 
mounts of diaphragm muscles at E13.5, 
E15.5, and E18.5 revealed that motor axons 
in the mutant embryos extended toward the 
diaphragm muscle but failed to grow or 
branch within the muscle at all stages ex- 
amined (Fig. 2B). In contrast, motor axons 
in WT embryos reached the diaphragm 
muscle by E13.5 and continued to grow 
within the muscle and to form a well-pat- 
terned endplate zone (Fig. 2B). These data 
indicate that motor axons in top2P-'- em- 
bryos reach their skeletal muscle targets but 
fail to grow or branch within their limb and 
diaphragm muscles and to contact differen- 
tiating muscle fibers. 

The presence of primary nerve trunks but 
not secondary branches in the developing 
limbs of topZP-'- embryos is reminiscent of 
the motor axon pattern in muscle-less limbs 
(lo), and points to a plausible defect in com- 
munication between muscle cells and motor 
axons in the mutant embryos. Because 
growth of nociceptive sensory neurons that 
innervate skin and not muscle is also defec- 
tive in top2P-I- embryos (see below), we 
favor the idea that IIP is required in neurons, 
rather than in muscles, for the expression of 
molecules essential for receiving cues for 

p-13.6 kb 
XSES B PB P S E  E E E B  BXPS 

+I 

' i i  
// 3' probe 

/ 

TK 1 

5' probe 

XSES 8 E X E E  E E B  BXPS 
mutant 

!------a kb-----+ 

axon growth and branching within the target 
tissue. 

Surprisingly, despite an. absence of syn- 
apses in the diaphragm muscle of top2f3-'- 
embryos, AChR clusters are enriched in a 
band near the middle of the muscle (Fig. 2A), 
rather than distributed uniformly along the 
length of muscle fibers. Current ideas of syn- 
apse formation suggest that nerve-derived 
signals are required to induce synaptic differ- 
entiation (11). Our results, however, suggest 
that the expression pattern of AChR clusters 
in skeletal muscles is determined, at least in 
part, by mechanisms that are autonomous to 
muscle. Consistent with this idea, although 
top2P-'- embryos lack axons and nerve ter- 
minals in both right and left hemi-diaphragms 
(Fig. 2A), AChR clusters are distributed more 
widely in the right than in the left hemi- 
diaphragm (Fig. 2A), like the patterns seen in 
WT embryos (Fig. 2A). Although it is possi- 
ble that motor axons, which fail to grow 
within developing muscle, provide diffusible 
signals that induce AChR clustering, our re- 
sults indicate that such signals would act on a 
muscle that is prepatterned. In principle, this 
prepattern could arise from separate lineages 
for synaptic and extrasynaptic myofiber nu- 
clei or from the pattern of muscle growth, in 
which myoblast fusion at the ends of devel- 
oping myofibers results in a mature central 
region and less differentiated distal ends of 
the muscle (12). Further, these results raise 
the possibility that spatial cues to restrict 
growing axons to the central region of the 
muscle could be provided by molecules that 
are prepatterned in developing muscle. 

Although neuromuscular synapses are ab- 
sent from diaphragm and limb muscles, syn- 
aptic sites are readily detected in intercostal 
muscles of top2P-'- embryos (Fig. 2C). Thus, 
our results indicate that the rules for synapse 
formation differ between intercostal muscles 
and limb and diaphragm muscles. Intercostal, 
limb, and diaphragm muscles are all hypaxial 
muscles, derived from cells in the lateral 

Fig. 1. (A) The relevant regions in the WT murine TOPZP gene (upper), active-site tyrosine codon. The hatched bars mark the positions of probes 
the neo/TK targeting vector (middle), and the mutated topZP allele used in genotyping; the "5' probe" was prepared by polymerase chain 
(lower). Coding stretches are represented by filled boxes; B, E, P, 5, and reaction with primers represented by the arrows 1 and 2 [see supple- 
X denote restriction sites of Bam HI, Eco RI, Pst I, Sac I, and Xba I, mentary Web material (6) for details on the construction of the targeting 
respectively, and neo and TK denote the neomycin-resistance and thy- vector and examples of genotyping and mRNA blot-hybridization re- 
midine kinase markers. The letter Y (upper) marks the position of the sults]. (B) Images of E17.5 WT (left) and topZP-'- (right) embryos. 
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dermomyotome (13), but only the precursors 
for diaphragm and limb muscles express the 
homeobox gene Lbxl and migrate from' the 
somite to the septum transversum or limb, 
respectively (14). Thus, the lack of top2P-'-
may have different manifestations in muscles 
of different lineages. 

Sensory axon growth, however, is aberrant 
in intercostal muscles. In WT embryos motor 
axons branch and terminate adjacent to the 
main intramuscular nerve, and sensory axons 
branch toward the rostra1 rib and terminate near 
muscle insertions on both sides of the rib (Fig. 
3, A to C). NF-stained axons in top2P-'- em-
bryos stray from the main nerve and grow 
profusely across the rib (Fig. 3A). By injecting 
DiI into the ventral horn of the spinal cord to 
selectively label motor axons (Fig. 3B), or into 
dorsal root ganglia to selectively label sensory 
axons (Fig. 3C), these ectopic axons in 
top2P-'- embryos are shown to be derived 

from sensory and not motor neurons. 
Sensory neuron defects in top2P-'- em-

bryos are not restricted to axon growth in 
skeletal muscle. Proprioceptive sensory 
neurons extend their primary axons into the 
ventral region of the spinal cord, where 
they terminate on interneurons or directly 
on motor neurons. In addition, these pro-
prioceptive sensory neurons extend collat-
erals in the dorsal spinal cord, and these 
collateral axons form the dorsal column 
that terminates in the medulla. Top2P-'-
embryos lack the dorsal column (Fig. 3D). 
Furthermore, axons of nociceptive sensory 
neurons that project to the dorsal horn of 
the spinal cord are absent in top2P-'- em-
bryos (Fig. 3D). Because nociceptive sen-
sory neurons have their peripheral endings 
in epidermis and not in skeletal muscle, the 
failure of these neurons to project within 
the spinal cord is unlikely to be owing to a 

Fig. 2. Failure of motor ax- Left hemi-diaphragm 
ons to grow and form syn-
apses in the diaphragm mus- A wild type 
-1- -c +..,.-X-l- --I. -.-- top2P -I-

requirement of the enzyme in skeletal mus-
cles. Because these axons are absent from 
the spinal cord as early as E14.5 (7),  the 
time of their normal projection into the 
spinal cord, sensory axons in top2P-'-
embryos apparently fail to initiate growth 
within the spinal cord, rather than entering 
and withdrawing at later stages. 

The pronounced neural and neuromuscu-
lar abnormalities in the top2P-'- embryos 
are observed at late stages of embryogene-
sis when neuron and muscle cells are well 
differentiated. Thus, these defects are un-
likely to reflect a general replicative or 
transcriptional role of IIP. Defects in neu-
rogenesis, associated with an increase in 
apoptosis, are also evident in mice lack-
ing XRCC4 or DNA ligase IV (IS, 16). 
XRCC4 protein and DNA ligase IV are 
components in a DNA repair complex, and 
thus their effects on neurogenesis may re-

Right hemi-diaphragm 

wild type top2P 'I-

AChR clusters, which is wider 
than in normal embryos, is 
present in the central region 
of topZP-I- muscles. Termi-
nal Schwann cells, labeled by 
antibodies specific to 5100 
(Dako), are associated with 
nerveterminals in normalmus-
cle but are absent from dia-
phragm muscles of top2P-l-
embryos (7). Experimentalde- B wild type C wild type. . 
tails are presented in the sup-
plementary Web material (6). 
(B) The phrenic nerve (arrow) 
reachesthe diaphragm muscle V! 
but fails to grow within the 2 
muscle at E13.5, E15.5, and 
E18.5. The NF-stained axons, 
present at the edge of the 
E18.5 WT and top2P-I- dia-
phragm muscle, are probably 
sensory or autonomic axons, 
rather than motor axons, be-
cause they are absent from 12 
embryos at earlier stages. (C) w ?di: :), 
Longitudinalsections of inter- 1 

costal muscles from E18.5 em-
bryos, stained with antibod-
ies to Syn or SlOO and a-BGT, 
show that intercostalmuscles 
are innervated normally. 2 

7 
W 
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Fig. 3. Defects in senso- 
ry projections within in- 
tercostal muscles and 
spinal cord of topZP-'- 
embryos. (A) Whole 
mounts of intercostal 
muscles from E18.5 em- 
bryos, stained with anti- 
bodies to NF, show that 
NF-stained axons grow 
aberrantly across inter- 
costal muscles and ribs. 
M and R mark the muscle 
and rib regions, respec- 
tively. (B) Motor axons of 
E18.5 embryos, labeled 
by injecting Dil into the 
ventral lateral spinal 
cord (DiI-MN), project 
normally in intercostal 
muscles. (C) Sensory ax- 
ons, labeled by injecting 
Dil into the dorsal root 
ganglia (Dil-DRG), proj- 
ect ectopically across the 
ribs (arrows). Fewer ec- 
topic sensory axons are 
seen in top2p-I- em- 
bryos by Dil Labeling (C) 
than by NF staining (A), 
owing to the low Dil-la- 
beling efficiency of sen- 
sory neurons. (D) Cross 
sections of the spinal 
cord from E18.5 embryos 
stained with antibodies 
to p75, which stains sen- 
sory as well as motor 
neurons, show that the 
dorsal column (arrows) is 
absent in top2pyi- em- 
bryos. Nociceptive sensory 
cord in WT embryos (arrol 
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mutant embryos might be related to the plausi- 
ble involvement o f  IIP in D N A  repair (1 7). In 
budding yeast, D N A  topoisomerases I and II 
suppress mitotic recombination in the ribosom- 
al R N A  gene cluster (18), and inactivation o f  
I IP could accentuate genome instability in 
neurons. The possible involvement o f  IIp in 
gene expression, especially in nonproliferating 
cells like neurons that express no IIa, also 
deserves consideration in view o f  recent find- 
ings that eukaryotic type I1 D N A  topoisomerake 
can form complexes with proteins implicated in 
gene expression (19) and chromatin remodeling 
(20). 
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Dorsal and ventral aspects of the eye are distinct from the early stages of devel- 
opment. The developing eye cup grows dorsally, and the choroidal fissure is formed 
on its ventral side. Retinal axons from the dorsal and ventral retina project t o  the 
ventral and dorsal tectum, respectively. Misexpression of the TbxS gene induced 
dorsalization of the ventral side of the eye and altered proje,ctions of retinal 
ganglion cell axons. Thus, TbxS is involved in  eye morphogenesis and is a topo- 
graphic determinant of the visual projections between retina and tectum. 

Dorsal (medial) and ventral (lateral) aspects organized topographic manner (I, 2). Chick 
o f  the eye are distinct f iom early stages o f  Tbx5 gene, a member o f  the T-box transcrip- 
development, and retinal axons project in an tion hctor family, is expressed in the dorsal 
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