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The Fe:ferritin molecule ratio was kept at 36: l .  The 
reaction of apoferritin with Fez+ and 0, was 
quenched at 25 ms when the peroxodiferric interme- 
diate had accumulated maximally, and at 1 s when 
the intermediate had decayed. 
The experiment was conducted at 3.0 CeV and 50 to 
100 mA, with the use of a Si(22O) double-crystal mono- 
chromator that was detuned 50%, with an Fe foil 
internal calibration (first inflection point at 711 1.2 eV). 
We used a 13-element Ge solid-state fluorescence de- 
tector (incident count rate 1 6 0  kHz per channel, about 
3-kHz Fe Ka fluorescence counts) at 10 K. The step size 
was 10 eV in the pre-edge region (6880 to 7080 eV), 
0.35 eV in the edge region (7080 to 7140 eV), and 0.05 
A-'  in the EXAFS region (2 to 13 A-'). Integration 
times ranged from 1 s in the pre-edge region to 20 s at 
k = 13 A-l, where k is the photoelectron wavevector. 
XANES data were normalized to tabulated x-ray cross 
sections, EXAFS data were extracted by subtracting a 
first-order pre-edge polynomial, and then a three- 
region cubic spline was fitted to the EXAFS. Data 
converted to k mace with E, = 7130 eV and weight- 
ed by k3. k spacedata (1.5 t i  11.9, 12.4, and 12.7%' 
for -02,  +OZZ5 "', and +OZ1 samples, respective- 
ly) were Fourier transformed to give the R space data 
in Fig. 2. 
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Modulation of Brain Reward 

Circuitry by Leptin 


Stephanie Fulton, Barbara Woodside, Peter Shizgal* 

Leptin, a hormone secreted by fat cells, suppresses food intake and promotes 
weight loss. To assess the action of this hormone on brain reward circuitry, 
changes in  the rewarding effect of lateral hypothalamic stimulation were 
measured after leptin administration. At five stimulation sites near the fornix, 
the effectiveness of the rewarding electrical stimulation was enhanced by 
chronic food restriction and attenuated by intracerebroventricular infusion of 
leptin. In contrast, the rewarding effect of stimulating neighboring sites was 
insensitive t o  chronic food restriction and was enhanced by leptin in three of 
four cases. These opposing effects of leptin may mirror complementary changes 
in  the rewarding effects of feeding and of competing behaviors. 

Research on the regulation of feeding and 
energy balance has been galvanized by the 
sequencing of the obese (ob) gene and the 
expression of its protein product, leptin, a 
circulating hormone secreted by adipocytes 
(1).Circulating leptin levels reflect the size of 
the fat mass (2) , and thus, this hormone has 
been considered as a signal that regulates 
long-term energy balance. Rodents with ho- 
mozygous mutations in the ob gene (the ob/ 
ob mouse) or in the gene for the leptin recep- 
tor (the db/db mouse or thefa/fa rat) manifest 
profound hyperphagia and obesity. Central or 
peripheral administration of leptin reverses 
the obesity syndrome found in ob/ob mice, 
stimulates metabolism, and reduces food in- 
take in lean mice or rats (3). 

Among the many ways in which leptin 
could alter food intake is by reducing the ap- 
petitive value of food. Such changes could en- 
sue if leptin were to alter the state of brain 
reward circuitry. Self-administration of reward- 
ing electrical brain stimulation ("self-stimula- 
tion") has long been used to assess the state of 
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this circuitry. Rats and a wide range of other 
vertebrates will actively seek out electrical 
stimulation of certain brain regions, including 
the lateral hypothalamus (LH) (4). The effect 
that induces the subject to reinitiate the stimu- 
lation is called "brain stimulation reward" 
(BSR). Weight loss resulting from chronic food 
restriction has been shown to enhance the re- 
warding effect of stimulating LH sites close to 
the fomix (5); this perifomical region has been 
implicated in the control of feeding and energy 
balance (6) . Thus, one might expect that the 
rewarding effect produced by stimulation of 
this region would be influenced by leptin. We 
tested this hypothesis by measuring leptin-in- 
duced changes in self-stimulation of the peri- 
fomical hypothalamus. 

In the demonstrations by Carr and his 
co-workers that perifornical self-stimulation 
is modulated by chronic food restriction (7), 
the rate at which the rats harvested the elec- 
trical rewards was measured as a function of 
the stimulation frequency. Chronic food re- 
striction shifted the resulting rate-frequency 
function leftward, toward weaker stimulation 
strengths; the lower the body weight, the 
weaker the stimulation required to entice the 
rats to earn a given number of rewards. We 
adopted an analogous approach to determine 
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Fig. 1. Effects of chronic food restriction on self-stimulation at LH sites where the rewarding effect 
of electrical stimulation is sensitive (left) or insensitive (right) to chronic food restriction. (A) 
Rate-frequency curves obtained with stimulation of a perifornical site are shifted leftward during 
chronic food restriction (open symbols) with respect to curves obtained after subsequent refeeding 
(solid symbols). (B) In contrast, stimulati~n of a neighboring site yields overlapping rate-frequency 
curves during chronic food restriction and after refeeding. Each data point in (A) and (B) is an 
average of six measurements collected on each test day. Error bars indicate SEM. (C and D) 
Magnitude of the curve shifts produced by refeeding after chronic food restriction in all subjects. 
M-50 represents the stimulation frequency required to induce the rat to earn half of the maximal 
number of rewards available per trial. **P < 0.005. 
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Fig. 2. Opposite influence of intracerebroventricular (ICV) infusion of leptin on rewarding effects 
of LH stimulation (left, sensitive to chronic restriction; right, insensitive to chronic restriction). (A) 
At a site where chronic restriction enhanced the rewarding effect (Fig. IA), leptin shifted the 
rate-frequency curve rightward (leptin, open symbols; vehicle control, solid symbols). (B) At a site 
where chronic restriction failed to enhance the rewarding effect (Fig. IB), leptin shifted the 
rate-frequency curve leftward. Error bars in (A) and (B) indicate SEM. (C) Magnitude of curve shifts 
(AM-50) during the 4 days after ICV leptin at five sites where the rewarding effect was enhanced 
by chronic food restriction. (There is a break in they axis between 0 and -0.155 log,, units.) (D) 
Magnitude of curve shifts during the 2 days after ICV leptin at four sites where the rewarding effect 
was not altered by chronic food restriction. *P < 0.05; **P < 0.005. 

whether leptin modulates the rewarding ef- 
fect of perifomical stimulation. 

Male Long-Evans rats bearing chronic 
stimulating electrodes and cerebroventricular 
cannulas (8) self-stimulated by pressing a 
lever that triggered a I-s train of rectangular, 
constant-current pulses, 0.1 ms in duration. 
The stimulation frequency was varied across 
trials over a range that drove the number of 
rewards earned from maximal to minimal 
levels (9) (Fig. 1, A and B). The measure of 
the effectiveness of the rewarding stimulation 
was the frequency that produced a half-max- 
imal rate of reward delivery ("M-50") (10). 
Manipulations that potentiate BSR decrease 
the M-50 value. 

Before leptin treatment, BSR data were 
obtained under the influence of chronic food 
restriction. Daily food intake was limited to 
10 glday until body weight reached -75% of 
the weight of age-matched controls. Rate- 
frequency curves collected during this period 
of restriction were compared to those ob- 
tained during a later stage of the experiment, 
when body weight had returned to normal 
levels after a period of free feeding (11). 

In five subjects, chronic food restriction en- 
hanced BSR. As illustrated in Fig. lA, rate- 
frequency curves obtained in'these rats during 
food restriction lie to the left of the curves 
obtained after subsequent refeeding, and the 
M-50 values (Fig. 1C) declined by 0.07 to 0.33 
log,, units. In contrast, refeeding after food 
restriction had little effect in the remaining five 
subjects. The rate-frequency curves obtained 
during restriction in these rats overlap the 
curves obtained during subsequent free feeding 
(for example, Fig. lB), and the M-50 values 
remained relatively stable (Fig. ID). Taken to- 
gether, the results are consistent with previous 
reports (5) that food restriction facilitates self- 
stimulation only at certain LH sites. 

The effects of leptin on self-stimulation 
were examined at the end of the period of 
chronic food restriction, when body weight 
was -75% of control values. One hour be- 
fore the test sessions, 2 p g  of recombinant 
murine leptin (Peprotech, Roanoke, Virginia) 
dissolved in 1.6 p1 of water was infused into 
the right lateral cerebral ventricle over a 
2-min period. In a separate group of rats, this 
dose produced a reliable reduction in dark- 
phase food intake over a period of 4 hours 
(12). In the five rats that had shown enhance- 
ment of: BSR during chronic food restriction, 
leptin decreased the effectiveness of the re- 
warding stimulation (13). Whereas chronic 
food restriction produced leftward shifts in 
the rate-frequency curves obtained from these 
subjects, leptin produced rightward shifts 
(Fig. 2, A and C) (14). These leptin-induced 
rightward shifts persisted for as long as 4 
days after a single infusion. Leptin had the. 
opposite effect in three of four rats in which 
the rewarding effect of LH stimulation was 
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unresponsive to food restriction. In these 
three rats, leptin increased the effectiveness 
of the rewarding stimulation: The rate-fre- 
quency curves were shifted leftward (Fig. 2, 
B and D l  In one rat in which BSR was 
unresponsive to chronic food restriction, the 
rate-frequency curves were not altered signif- 
icantly by leptin administration; the effect of 
leptin could not be tested in the remaining 

hypothalamus; activation of these cells produc- 
es a rewarding effect that is enhanced by chron- 
ic restriction and attenuated by leptin. 

The chronic character of the food-restriction 
regimen, which was in force long enough to 
produce substantial weight loss (-25%), was 
crucial to the enhancement of BSR. In contrast 
to the effects of the chronic regimen, acute food 
deprivation was ineffective in altering BSR, 

a report of body weight changes lasting up to 
6 days after a single injection of leptin (21). 

Leptin attenuated BSR at restriction-sensi- 
tive sites but facilitated self-stimulation of three 
of the four sites where BSR was unresponsive 
to chronic food restriction. These opposite ef- 
fects of leptin may reflect the comparative pro- 
cess believed to underlie behavioral allocation 
(22). In such views, the prevalence of a partic- 

restriction-insensitive subject (15). even when imposed for 48 hours (18). As ular behavior, such as feeding, can be reduced 
After completion of testing, the LH stimu- shown in Fig. 4, most rate-frequency curves either by decreasing the reward value it gener- 

lation sites were marked by means of the Prus- obtained during acute deprivation overlap ates or by increasing the value of competing 
sian blue method (16). Sites where BSR was curves obtained during free feeding, even in the activities. If so, leptin could make complemen- 
enhanced by chronic food restriction and di- subjects in which BSR was enhanced by chon- tary contributions to energy balance by reduc- 
minished by leptin were located dorsal or dor- ic food restriction (Fig. 1, A and C). Thus, the ing food reward while enhancing the value of 
solateral to the fomix (Fig. 3). The remaining 
sites were nearby but nonoverlapping. Such a 
diskbution is consistent with the notion that the 
rewarding effect of LH stimulation arises from 
activation of multiple, hnctionally different 
subpopulations of inhomogeneously inter- 
twined neurons (1 7). In this view, small differ- 
ences in the location of the electrode tip and the 
path of current flow could alter the relative 
weights of the subpopulations sampled by dif- 
ferent electrodes. In the simplest account of the 

enhancement of BSR by food restriction ap- 
pears to depend on signals that contribute to the 
regulation of long-term energy balance. 

The notion that BSR is modulated by sig- 
nals related to the long-term rather than the 
short-term regulation of energy balance is con- 
sistent with previous findings. For example, at 
LH sites where BSR is enhanced by chronic 
food restriction, the rewarding effect is not al- 
tered during acute glucopenia induced by 2-de- 
oxyglucose or during acute lipoprivation in- 

behaviors incompatible with feeding. At restric- 
tion-sensitive sites, neurons that link long-term 
changes in energy balance to the rewarding 
effect of food may be prominent in generating 
BSR, whereas at the remaining sites, BSR may 
arise primarily from the activation of neurons 
subserving behaviors incompatible with the in- 
gestion of energy-rich substances. 

The results reported here tie the actions of 
leptin to modulation of brain reward circuitry. A 
rich basis for linking these effects to specific 

results reported here, one of the stimulated sub- duced by nicotinic acid (19). It has also been populations of cells has been provided by recent 
populations consists of neurons that arise in, shown that BSR is insensitive to acute accumu- progress in describing the receptors, neurotrans- 
terminate in, or course through the perifomical lation of sucrose in the gut (20). mitters, and interconnections of hypothalamic 

The reduction in the effectiveness of the neurons. For example, the perifomical area and 
rewarding stimulation persisted for as long as other regions of the LH receive projections from 
4 days after a single injection of leptin. The leptin-sensitive cells containing neuropeptides 
long duration of this effect is consistent with (such as neuropeptide Y, a-melanocytt+stimu- 
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Fig. 3. Location of the tips of the stimulation 
electrodes. Electrodes producing rewarding ef- 
fects that were enhanced by chronic food re- 
striction are designated by solid triangles, and 
electrodes producing rewarding effects that 
were unaffected by chronic food restriction are 
designated by solid circles. The coronal sections 
are based on (29). f, fornix; DMN, dorsomedial 
nucleus of the hypothalamus; VMN, ventrome- 
dial nucleus of the hypothalamus; and ARC, 
arcuate nucleus. 
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Fig. 4. Failure of acute food deprivation t o  alter self-stimulation. Data from sites where the 
rewarding effect of electrical stimulation was enhanced (left) or unchanged (right) by chronic 
restriction. (A and B) Neither in  the case of a site where BSR was enhanced by chronic restriction 
(Fig. 1A) nor in the case of a site where BSR was insensitive t o  chronic restriction (Fig. 1B) did 
rate-frequency curves obtained after 48 hours of food deprivation differ systematically from the 
free-feeding baseline. Error bars indicate SEM. (C and D) Magnitude of the curve shifts (AM-50) 
produced by acute food deprivation (four restriction-sensitive and four restriction-insensitive sites, 
respectively). In the one case in  which a significant effect was observed (L45), deprivation produced 
a small rightward shift, suggesting that the rewarding effect was attenuated. *P < 0.05. 
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lating hormone, agouti-related protein, and co- 
caine-amphetamine-regulated transcript) that 
are implicated in the control of feeding and 
energy balance (23, 24). The perifomical LH 
includes neurons that express the long form of 
the leptin receptor (25). Orexin or melanin-
concentrating hormone (23. 26), neuropeptides 
that promote food intake and weight gain (27), 

have been found in LH neurons, and LH neu-
rons containing corticotropin-releasing hormone 
have been implicated in dehydration-induced 
anorexia (28). Working out the contribution of 
such cells to the rewarding effects of electrical 
brain stimulation and feeding could prove im- 
portant to understanding energy balance. Con- 
versely. progress in understanding the neural 
control of food intake and energy expenditure 
may shed light on the structure and function of 
brain reward circuitry. 
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Sex Determination in Malaria 

Parasites 
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A century ago, W. G. MacCallum identified distinct male and female forms in 
malaria parasites of both birds and humans. Since then, scientists have been 
puzzled by the high female-to-male ratios of parasites in Plasmodium infections 
and by the mechanism of sex determination. The sex ratio of malaria parasites 
was shown t o  become progressively more male as conditions that allow moti l i ty 
and subsequent fertilization by the male parasites become adverse. This re- 
sulted from an increased immune response against male gametes, which co- 
incides with intense host erythropoietic activity. Natural and artificial induction 
of erythropoiesis in vertebrate hosts provoked a shift toward male parasite 
production. This change in  parasite sex ratio led t o  reduced reproductive success 
in  the parasite, which suggests that sex determination is adaptive and is 
regulated by the hematologic state of the host. 

Malaria parasites are transmitted from the ver- 
tebrate host to the mosquito vector by sexual 
blood stages (gametocytes). when taken up in 
the bloodmeaibv the-en~orging female mos- " " "  
quito. male gametocytes (microgametocytes) 

lLaboratoire de Biochirnie et Biologie Moleculaire des 
Insectes, lnstitut Pasteur, 25 Rue du Dr. Roux, 75724 

undergo exflagellation, producing up to eight 
male gametes; a female gametocyte (macroga- 
metocyte) produces only one female gamete, . & 

which is fertilized bv a single male gamete. The " " 
gametocyte sex ratio tends to be female-biased 
in all species of malaria parasites ( 1 )  and sev- 
era1 authors have considered that the theorv of - - ~ - ~ . - - ~ - - - ~~ 

local mate which successfully ex-
~ ~ plains many paris cedex 15, F ~zlnstitute of ~ ~ ~~ , ~ l ~ cases~ biased~sex , (2). 

"8 

irnl qnrietv o f  l ondon R ~ r r e n t ' ~  London NG determines the gametocpe sex ratio of malaria Park.- - . -- - -., - . - - . - - ., . . - -. - - - .., -- . -- . . . . . 


4 ~ Y ,United to this theory, when an 
parasites (3). ~ c c o r d i n ~  
*To whom correspondence should be addressed. E- infection Consists of a few parasite Clones, 
mail: topotito@pasteur.fr whose offspring will mate among themselves. a 
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