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rock-forming minerals. Of all of these possi- 
ble constituents, only HCN, NH,, NH,.2H20 . - 
(ammonia hydrate), and alumino silicate 
clays have absorption features in the 2.2-pm 
region (Fig. 4). We constructed spectral mod- 

Observations have resolved the satellite Charon from its parent planet Pluto, els using combinations of these compounds, 
giving separate spectra of the two,objects from 1.0 t o  2.5 micrometers. The water ice, and a dark neutral material (12) and 
spectrum of Charon is found t o  be different from that of Pluto, wi th water ice compared them with the spectrum of Charon. 
in crystalline form covering most of the surface of the satellite. In addition, an 
absorption feature in Charon's spectrum suggests the presence of ammonia 
ices. Ammonia ice-water ice mixtures have been proposed as the cause of 
flowlike features observed on the surfaces of many icy satellites. The existence 
of such ices on Charon may indicate geological activity in the satellite's past. 

Pluto's satellite Charon orbits Pluto so close- The spectrum of Pluto has previously 
ly that, even though it is only five' times been studied in detail (6). The spectrum of 
fainter than Pluto, Charon's existence was Charon has been known previously to be 
not discovered until 1978 (I). Even after dominated by the signature of water ice (2), 
discovery, the small separation between the but the crudeness of the previous spectrum 

These comparisons show that HCN cannot 
reproduce the abrupt flattening of the 2.2-pm 
peak that is observed on Charon and that the 
clays have band centers displaced to shorter 
wavelengths than observed on Charon. Am- 
monia and ammonia hydrate individually 
have absorption features too narrow to repro- 
duce the Charon spectrum, but a combination 
of the two produces an absorption that match- 
es both the depth and location of the observed 
Charon absorption. In addition, all other ab- 

two objects has made separate study of them prevented further analysis. As expected, our sorption features of ammonia and ammonia 
difficult. Most of our current knowledge spectrum of Charon is also dominated by the hydrate correspond to strong water ice ab- 
about the composition of Charon comes from 1.5- and 2.0-p.m absorption bands of water sorptions, so the spectral signature of water 
observations of a series of mutual Pluto- ice. The additional appearance of the small ice is not disturbed elsewhere, as seen in a 
Charon eclipses between 1985 and 1990. In 1.65-pm absorption feature redward of the model consisting of water ice (44% surface 
two such series of eclipses, Pluto and Charon main 1.5-pm absorption demonstrates that coverage), ammonia (I%), ammonia hydrate 
were observed together, and then Pluto was the surface water ice is unexpectedly crystal- (24%), and a dark neutral material (32%) 
observed separately as it completely occulted line, rather than amorphous, in form (7). At (Fig. 3). Like crystalline water ice, ammonia 
Charon. Subtraction of the two observations the -50 K temperature of Charon, crystalline hydrate ices are destroyed by radiation (13). 
then yielded the brightness of Charon. By water ice is turned into amorphous form un- Whatever process allows the crystalline ices 
performing these observations at a small nurn- der bombardment from solar ultraviolet radi- to exist on the surface of Charon could also 
ber of wavelengths over the near-infrared ation (8). The presence of crystalline ice on be responsible for the continued appearance 
region, a low-resolution spectrum of Charon 
was synthesized. These spectra showed evi- 
dence for a surface covered in water ice, 
much like the satellites of the giant planets 
and unlike the surface of Pluto (2). The pos- 
sible existence of materials other than water 
ice was also considered, but the crudeness of 
the data did not permit any resolution of the 
issue (3). 

Observing Pluto and Charon separately 
from the ground is difficult. The maximum 
separation between the two objects is current- 
ly 0.9 arc seconds, and typical atmosphere- 
induced blurring at the Keck telescope on 
Mauna Kea is -0.5 arc seconds in the infra- 
red. On an exceptional night of 0.3-arc sec- 
ond atmospheric seeing, the two objects were 
distinct, and we obtained well-separated 
near-infrared images (Fig. 1) (4) and spectra 
of the two objects (Figs. 2 and 3) (5). The 
lack of any common spectral features be- 
tween Pluto and Charon demonstrates that the 
final spectrum of Charon is separated from 
Pluto. 
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the surface of Charon suggests that continu- 
ous micrometeorite impact vaporization and 
the subsequent recondensation of crystalline 
ice on the surface of Charon proceed faster 
than the radiation-induced transformation to 
amorphous ice. The presence of crystalline 
water ice on all of the well-studied icy satel- 
lites in the outer solar system (9) confirms 
that a ubiquitous mechanism such as impacts 
must be responsible. 

A model consisting of only crystalline 
water ice and a dark, spectrally neutral mate- 
rial (10) reproduces all of the major features 
of our spectrum of Charon except at the 
2.2-pm peak and longward of 2.3 pm. Al- 
though the inclusion of larger grain sizes of 
water ice could contribute to a better fit be- 
yond 2.3 pm, the suppression of the 2.2-pm 
peak in Charon cannot be attributed to water 
ice and requires additional absorbing materi- 
als on the surface. To identify the 2.2-pm 
absorption, we considered all of the ices pre- 
viously observed on or proposed for solar 
system bodies and the interstellar medium. In 
addition, we considered all other simple com- 
binations of H, C, N, and 0 ,  the four most 
abundant molecule-forming elements in the 
solar system, and more complex hydrocar- 
bons such as tholins and kerogens, which 

of ammonia even in the presence of radiation. 
The remaining discrepancies between the 
model and the data and the use of a combi- 
nation of pure ammonia and ammonia hy- 
drate suggest that Charon may have a differ- 
ent hydrate structure (some inclusion of 
NH,.H,O). Unfortunately, a systematic spec- 

H 
0.9 arc seconds 

Fig. 1. Images of Pluto (left) and its satellite 
Charon (right) at the K band (-2 pm). The 
objects are spaced by 0.90 arc seconds and are 
separated in the 0.30-arc second seeing. The 
histogram above the image gives a trace of the 
intensity through the center of the system, 
showing how little of the light from Pluto con- 
taminates the spectrum of Charon. 
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Fig. 2 (Left). The near-infrared spectrum of Pluto. The histogrammed geometric albedo spectrum of Charon. The histogram gives the data, 
points give the data, scaled to a value of unity at a wavelength of 1.5 km, which has been scaled to the geometric albedo of Charon derived by 
and the smooth line is a reflectance spectrum of pure methane ice from Roush (3). The dashed line shows a model consisting of only water ice 
Fink and Sill (7). The surface of Pluto is also known to contain N, and and a dark neutral absorber. The solid line is a model in which ammonia 
CO, but the weak spectral features due to these ices are not readily and ammonia hydrate ices have been added to the water ice and neutral 
visible at this spectral resolution. Fig. 3 (right). The near-infrared absorber. 
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Fig. 4. Spectra of candidates for the 2.2-pm 
absorption seen on Charon (20). Montmorillon-
ite and kaolinite are alumino silicate clays. 

troscopic study of ammonia hydrates has not 
been performed at these wavelengths. It is 
known, however, that hydration of ammonia 
will shift the 2.2-pm absorption feature to a 
shorter wavelength and broaden the feature 
(14). The model fit also has discrepancies at 
the bottom of the 2.0-pm trough and a higher 
albedo in the region longward of 2.3 pm, 
where additional absorbers may be needed. In 
addition, the model continuum level short- 
ward of 1.5 pm is too high, suggesting that 
the dark surface component is optically red, 
as has been inferred for many low-albedo 
asteroids and other dark surfaces in the solar 
system (15). 

The existence of nitrogen in the form of 
ammonia ices on the surface of Charon is a 
marked contrast to the surface of Pluto, where 
the nitrogen exists in molecular form. This 
difference may be due to the high volatility of 
molecular nitrogen and the relative sizes of 
these outer solar system bodies. In the ab- 
sence of gravity, bodies at the -50 K tem-
perature of Pluto and Charon would sublime 
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Fig. 5. Evaporation rates (in meters per billion 
years) of ices from the surface of an object in 
the outer solar system. The rates were calcu- 
lated by assuming equilibrium between the 
temperature-dependent vapor pressure of the 
ice and the pressure of the escaping gas imme- 
diately above the surface of the object (27). 
AU, astronomical units. 

about 1000 km of molecular nitrogen over the 
age of the solar system (Fig. 5). Pluto, with a 
radius of 1 195 km, a mass of 1.5 X kg, 
and therefore an escape velocity of 1.3 km 
s-', is massive enough to retain the nitrogen 
as an atmosphere and a frost surface. Charon, 
however, owing to its smaller size-a radius 
of 593 km and a mass of 3.3 X lo2' kg-and 
hence smaller escape velocity of 0.86 km 
s f ' ,  is -2 million times less efficient at 
retaining an atmosphere against Jean's escape 
(16) so the volatile ices seen on Pluto (in- 
cluding CO and CH,) will be sublimed from 
Charon over time scales as short as millions 
of years. If this hypothesis for the origin of 
the difference in surface composition of Pluto 
and Charon is correct, a prediction would be 
that underneath a layer of condensed volatile 
frosts, the surface of Pluto is much like that of 
Charon. 

Ammonia ices have been predicted to be 
an important component of icy satellites in 
the outer solar system (1 7). The discovery by 
Voyager that even relatively small satellites, 
with interiors too cold to melt pure ice, have 
had complex geologic histories led to the 
realization that ammonia-water mixtures, be- 
cause of their lower melting temperatures and 
higher viscosities than pure water, may be 
responsible for the activity seen on these 
bodies (18). Charon is about the size of the 
uranian satellites Ariel (579 km) and Umbriel 
(586 km), both of which exhibit a variety of 
surface geologic units including cratered 
plains and fault valleys whose floors suggest 
infilling by erupted and flowing materials 
similar to terrestrial volcanic flows (19). Cha-
ron should have experienced similar amounts 
of accretional heating in the past, in addition 
to any extra heating from tidal evolution of 
the Pluto-Charon system. so similar geologi- 
cal activity on this body is expected. The 
detection of ammonia ices on Charon sug- 
gests that such ices may play an important 
role in geological activity on icy bodies in the 
outer solar system. 
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The mean relative velocity for a pair of gal
axies at positions rx and r2 is ul2 = Hr, 
where r = rl — r2 and the constant of 
proportionality H = \00h km s _ 1 Mpc - 1 is 
the Hubble parameter (1, 2). The quantity 
0.6 < h < 1 parameterizes uncertainties in 
H measurements. This law is an idealization, 
followed by real galaxies only on sufficiently 
large scales, corresponding to a uniform mass 
distribution. On smaller scales, the gravita
tional field induced by galaxy clusters and 
voids generates local deviations from the 
Hubble flow, called peculiar velocities. Cor
recting for this effect gives ul2 = Hr + 
vl2rlr. The quantity v12(r) is called the mean 
pairwise streaming velocity. In the limit of 
large r, v12 = 0. In the opposite limit of 
small separations, ul2(r) = 0 (virial equilib-
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Hum). Hence, at intermediate separations, 
v12 < 0 and we can expect to observe grav
itational infall, or the "mean tendency of 
well-separated galaxies to approach each oth
er" (3). In a recent paper, we derived an 
expression, relating v12 to cosmological pa
rameters (4); in another, using Monte Carlo 
simulations, we showed how v12 can be mea
sured from velocity-distance surveys of gal
axies (5). Our purpose here is to estimate 
vl2(r) from observations and constrain the 
cosmological density parameter IX 

The statistic we consider was introduced 
in the context of the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) kinetic 
theory describing the dynamical evolution of 
a self-gravitating collection of particles (3, 
6). One of the BBGKY equations is the pair 
conservation equation, relating the time evo
lution of v12 to £(r), the two-point correla
tion function of spatial fluctuations in the 
fractional matter density contrast (3). Its so
lution is well approximated by (4) 

v12(r) = - | / / r a 0 6 | ( r ) [ l + a l ( r ) ] 

(1) 

3fe(x)x?dx 
€ W = ^ [1 + « r ) ] ( 2 ) 

where a = 1.2 - 0.657, y = ~(d\n Qd In 

Evidence for a Low-Density 
Universe from the Relative 

Velocities of Galaxies 
R. Juszkiewicz,1* P. G. Ferreira,1-2 3 | H. A. Feldman,4 A. H. Jaffe,5 

M. Davis5 

The motions of galaxies can be used to constrain the cosmological density 
parameter O and the clustering amplitude of matter on large scales. The mean 
relative velocity of galaxy pairs, estimated from the Mark III survey, indicates 
that H = 0.35^o;l5- If the clustering of galaxies is unbiased on large scales, O = 
0.35 ± 0.15, so that an unbiased Einstein-de Sitter model (O = 1) is incon
sistent with the data. 
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