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Equilibrium Regained: From 

Nonequilibrium Chaos to 


Statistical Mechanics 

David A. Egolf 

Far-from-equilibrium, spatially extended chaotic systems have generally eluded 
analytical solution, leading researchers t o  consider theories based on a statis- 
tical rather than a detailed knowledge of the microscopic length scales. Building 
on the recent discovery of a separation of length scales between macroscopic 
behavior and microscopic chaos, a simple far-from-equilibrium spatially ex- 
tended chaotic system has been studied computationally a t  intermediate, 
coarse-grained scales. Equilibrium properties such as Cibbs distributions and 
detailed balance are recovered at  these scales, which suggests that the mac- 
roscopic behavior of some far-from-equilibrium systems might be understood 
in  terms of equilibrium statistical mechanics. 

Statistical mechanics describes the macro-
scopic physical properties of matter through a 
probabilistic, rather than a detailed, knowl- 
edge of the microscopic dynamics and has 
been applied successfully to a wide variety of 
equilibrium systems, from simple molecular 
gases to white dwarf stars. It has provided a 
theoretical understanding of the phases of 
matter, the transitions between phases, and 
the deep property of universality that unifies 
the descriptions of continuous transitions in 
systems that are physically quite distinct (for 
example, magnets and gases). In nature, how- 
ever, many systems are not in equilibrium, 
including, for example, large-scale flows in 
the atmosphere, the evolution of ecological 
systems, and the transport of energy in cells. 
None of these situations can be understood 
with equilibrium statistical mechanics. 

Although theory has been developed to ex- 
tend equilibrium statistical mechanics to sys- 
tems only slightly perturbed away from equilib- 
rium (for which the evolution of the system is 
well-approximated with only linear terms), in 
deterministic systems dnven far from equilibri- 
um (where nonlinearities are important) theoret- 
ical progress has been limited to "simple" situ- 
ations, such as the onset of symmetry breaking, 
the stability of perfect patterns, and the motions 
of single topological defects in perfect patterns 
(1). Theorists have not yet developed an under- 
standing of the intriguing phenomenon of "spa- 
tiotemporal chaos" (or spatially extended chaos) 
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that is typically characterized by disordered ar- 
rays of defects, patches of uncorrelated regions, 
and a chaotic dynamics that persists indefinitely 
(2). This remarkable behavior has been found in 
large, deterministic, far-from-equilibrium sys- 
tems as varied as convecting horizontal fluid 
layers (3), chemical reaction-diffusion systems 
(4 ) ,colonies of microorganisms (5), and fibril- 
lating heart tissue (6). These disparate systems 
often display strikingly similar macroscopic fea- 
tures (such as locally ordered striped or hexag- 
onal patterns and dislocation, spiral, and target 
defects) and behavior (for example, dramatic 
qualitative changes in response to modifications 
of experimental parameters reminiscent of phase 
transitions in equilibrium systems). Such behav- 
ior within a system and the similarities between 
different systems beg the question of whether 
one can construct a statistical, predictive theory 
of phases and transitions in these chaotic, far- 
from-equilibrium systems. 

At first glance, far-from-equilibrium, 
strongly dissipative, deterministic systems may 
appear to have little in common with equilibri- 
um systems; for example, at the detailed level, 
these systems do not have the benefit of tending 
toward the minimum of a free-energy function- 
al, do not have a Gibbsian distribution of states, 
and do not allow the calculational technique of 
averages over noise terms. However, several 
experimental and computational studies have 
explored the similarities in the behaviors of 
these systems and the behaviors of equilibrium 
systems. A particular focus has been the possi- 
bility of phase transition-like behavior in these 
systems (4, 7-11). The data reported here un- 
cover a deeper level of similarity and suggest 
the possibility of salvaging much of the frame- 

work of equilibrium statistical mechanics. In 
particular, large-scale computational studies of a 
simple, large, chaotic, far-from-equilibrium sys- 
tem demonstrate that several cornerstones of 
equilibrium statistical mechanics-ergodicity, 
detailed balance, Gibbs distributions, partition 
filnctions, and renormalization group flows of 
coupling constants-are recovered at a coarse- 
grained scale. 

In analogy to the simple explorations of 
equilibrium statistical mechanics with the Ising 
model, one of the simplest spatially extended 
chaotic systems was used as a test bed (12). This 
system, a coupled map lattice (CML) first stud- 
ied by Miller and Huse (8), consists of a set of 
scalar variables ui at integer time t on a square 
hvo-dimensional spatially periodic L X L gnd 
with positions indicated by .? = a? + b?;,where 
a and b are integers and 1 and ,C are the unit 
vectors of the two-dimensional lattice. The rule 
for updating the variables from time t to t + 1 is 

ll.;+' = +(I!;) + gC[+(ll:?) - +(11;)] 
i,i !  

(la) 
where g indicates the strength of the spatial 
coupling, and ,?(i)denotes nearest neighbors 
of site ,?. The chaotic local map +(u) is given 
by 

( lb)  
This CML exhibits chaotic, spatially disordered 
dynamics for values of g at least within the 
range [O, 0.251. Miller and Huse (8) reported 
that at g,. == 0.2054, this system undergoes a 
parama~etic-to-ferromagnetic transition ex-
hibiting a number of features in common with 
the equilibrium transition in the Ising ferromag- 
net (13). 

To study the statistical bulk properties of 
spatially extended chaotic states ["extensive 
chaos" (1, 14)], the "thermodynamic limit" 
of systems approaching infinite size was tak- 
en. O'Hern et al. (15) demonstrated that the 
behavior of Eq. 1 can be considered extensive 
for system sizes as small as L == 9. Results 
reported here were obtained for system sizes 
ranging from 1 X 1 to 1024 X 1024 over 
times as large as 10'' iterations (after typi- 
cally 10' iterations of transient), often aver- 
aged over ensembles of up to 256 systems 
with identical parameters but differing initial 
conditions [with each site u;=O initialized to a 
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over individual site values (rather than on more 
complicated combinations of site values). 

scribes the decay of the two-point equal-time 
correlations in sign(u) and diverges at the appar-
ent critical point gc -= 0.2054. The microscopic 
length scale tc is on the order of one to two 

Figure 1A illustrates another feature of Eq. 
1. The distribution indicated by the filled circles, 
collected from all sites of a large system at a 
single instant in time, suggests that the system is 
self-averaging-for a large enough lattice, the 
single system is equivalent to an ensemble of 
independent systems (or a single system over a 
long period of time). The distributions in Fig. 
1A are statistically stationary in that after a 

lattice spacings over a wide range of coupling 
strengths g (including gc),describes the decay of 
correlations in ul. and agrees with a length scale 
characterizing the chaotic dynamics ( I ,  9, 15). 

Figure 1B shows that spatial averages (1~1)~; 
over sublattices of size G x G approxinlate 
Gaussian-distributed white noise for coarse-

transient period, the distributions do not depend 
on time. The properties of ergodicity and self-

grain regions as small as 6 X 6 lattice sites. For 
a Gaussian distribution, the even moments of 

averaging hold at least for 0.18 < g < g = 

0.2054. Above g,, Eq. 1 exhibits broken ergod-
the temporal and spatial fluctuations in (lul), 
about its mean (lul),,, (scaled by the factors used 
in Fig. 1B) should be equal, and the odd mo-
ments should be zero. Figure 1B also shows that 

icity, such that any system remains in either 
of two regions of phase space (at least in the 
infinite system size limit), depending on the 
initial state-a positive "magnetization" or 

(lul), is delta-function-correlated in space be-
cause the mean-square fluctuations fall off as 
G-> for large values of G (equivalent to aver-
aging independent Gaussian samples). Similar 
plots for temporal coarse-graining show that 
( I u ~ ) ~is delta-function-correlated in time for 
large enough temporal coarse-grains. For the 

a negative "magnetization." This same bro-
ken ergodicity is observed in equilibrium 
continuous-phase transitions. 

Equilibrium systems are often assumed to 
obey the principle of detailed balance: 

data shown below at g = 0.204, a coarse-gram 
size G = 16 was used. This grain size is smaller 

Fig. 1. (A) Demonstration of ergodicity and self-
averaging. Data were obtained from simulations 
of Eq. 1 with g = 0.195. Open squares and the 
solid line are probability distributions of time-
dependent measurementsof u$ , with 2, = (300, 
500) on a 512 X 512 over 4,800,000 iterations 
after a transient of 100,000 iterations, for a single 
system (squares) and an ensemble of eight sys-
tems (line). Solid circles show the probability dis-
tribution of all site values ufo for a 1024 X 1024 
lattice at time to= 200,000xiterations.(B)Depen-
dence on coarse-grain size C of the 2nd (circles), 
3rd (squares), 4th (triangles), and 6th (upside-
down triangles) moments of the fluctuations of 
( 1 ~ 1 ) ~ about its mean. The even moments are 
scaled such that if the fluctuations are Gaussian, 
the moments will be equal. (The odd moments 
should vanish.) The solid line is a guide to  the C-' 
fall-off. Data for larger coarse-grain sizes (not 
shown on this plot) continue to fall off as K2. 

where P,,is the (stationary) probability of a 
particular system (out of a large ensemble of 

than the macroscopic length scale tl,= 24, but 
large enough that the effective noise IS well 
described by Gaussian-distributed delta-func-
tion-correlated white noise. For the tests de-

systems) being in state r, R, ,, is the rate at 
which a system in state r makes a transition to 

scnbed below. a vanety of coarse-gram sizes 
were tested, slzes G 2 8 all y~eldedsiillilar 
results (21) 

To test detailed balance at coarse-grained 
scales, the dqnamlcs of a Ghr X GY latt~ce 

state s. and -r represents the time-reversed state 
corresponding to state r (for example, in particle 
systems this would indicate the state with all of 
the momenta reversed). For certain cases, de-
tailed balance can be proven to be a necessary 
and sufficient condition for equilibrium (17). 
Often a proof of detailed balance can be provid-

described by Eq. 1 was coarse-grained into a 
new regular. periodic N X N lattice with site 

ed by using the underlying reversibility of the 
microscopic processes involved. However, this 

variables ti;T = i- 1 and an internal hidden cha-
otic dynamics characterized by fluctuations in 

microscopic reversibility is not a necessary con-
dition for the observation of detailed balance at 

lu at each site. Each site on the coarse-grained 
lattice remesents one of the NZ distinct G X G 
regions of the onginal lattice The values of the 
coarse-grained variables are given by C: = slgn 
((~i)~~~,,where CG(?) 1s the coarse-grain 
region corresponding to positlon ?. and (),, 
represents an average over the tlmes [T. T + 
AT) with AT = 100, typically (22) An example 
of the coarse-graining (with b = 16 and G = 

16) is shown in Flg 2 Each of the 2" ' poss~ble 
coarse-grained states is ident~fiedby a particular 

scales coarser than that of the microscopic dy-
namics. In particular, the microscopic irrevers-
ibility of dissipative, far-from-equilibrium sys-
tems does not preclude the observation of de-random number chosen from (- 1, I)] 

One property of equilibrium systems that is 
perhaps not surprising to find in spatiotemporal 

tailed balance, at least in states coarser than the 
microscopic scales. 

The spatiotemporal dynamics of Eq. 1 sug-
gests a natural scale for studying properties such 
as detailed balance. A recent series of papers has 

chaotic systems that are far from equilibrium is 
ergodicity. A system is ergodic if the infinite-
time average of an observable is independent of 
the initial condition (except for a set of initial 
states of measure zero). Indeed. a certain class of 
chaotic CMLs with weak coupling ( g  << 1 for 
Eq. la) has been proven to exhibit ergodicity 

demonstrated the existence of a separation of 
length scales in several far-from-equilibrium 
spatiotemporal chaotic systems (9. 14. 15, 18. 
19). For these systems, a chaotic length scale 
was found to be much shorter than the typical 
macroscopic length scale. This separation of 
scales suggests the consideration of a statistical 

arrangement of pluses and minuses on the .\I X 

coarse-grained lattice. In this report, the 
coarse-grained dynamics was studied with .V = 

4. yielding 216 possible states (23). 
As described above. the coarse-grained dy-(16). Unfortunately. this proof has not been 

extended to stronger coupling. Figure 1A sug- namics of Eq 1 1s said to obey detalled balance 
if. over a large number of iterations (or a large 
ensemble. or both). the number of transltlons 
from state r to stateJ, <+) = P,R,-i, IS balanced 
by the number of transit~onsfrom state I to state 
1. $-r  = PA+,  (for t h ~ ssystem, a state 1 and ~ t s  
t~me-reversal - 1  are the same) Howeber. a 
measurement of A = T,,, - TJ -, pertonned 
over only a finlte penod of time (or on a fimte 
ensemble of systems) will be only approxlmate-

gests that Eq. 1 is ergodic even for strong cou-
plings. Rather than reporting simple time-aver-
ages. Fig. 1A shows the distribution of values of 

description of a "coarse-grained" intemediate-
scale dynamics, with the fine-scale chaos acting 
as an effective noise or temperature bath. [This 
scenario is similar to the assumption of molec-
ular chaos (20) in gases.] O'Hem et al. (15) 

the observable U &  obtained at a single site ,?,, 
over a large number of iterations for a sin-
gle system (open squares) and an ensemble of 
systems (solid line). The overlapping distribu-
tions imply that the system is ergodic. at least 

found two length scales within large systems 
described by Eq. 1-a macroscopic scale <,,and 
a microscopic scale << .  The length scale <,, de-for observables that depend only on averages 
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Fig. 2. (A) Spatial field A B 
u: of Eq. i and (B) 
coarse-grained field L7t, 
at t = 50,000 and 
g = 0.204 for a lattice 
of size 256 X 256 and 
coarse-grain size 16 X 
16 (C = 16). The color 
range from black to 
white represents field 
values from -1 to + I .  

ly zero for a finite number of transitions N = grained Hamiltonian also allows the calcu- 
T,,j + If each of the transitions i + j and lation of the partition function Z and the 

j -+ i are independent, then we expect the root- host of thermodynamic quantities that de- 
mean-square measurement error ((A/N)')ln (av- pend on 2. Detailed balance, effective Ham- 
eraged over many measurements of A) to shrink iltonians, and partition functions were 
as N-1n . present on both sides of the critical point gc - 0.2054 for a variety of values g. 

((g)2) = N- (3) The behavior of the reduced couplings a(d) 
as a function of the coarse-pin size G is at least 

where the average is taken over measurements qualitatively consistent with the behavior of 
of A for many transitions i + j, each with 
approximately the same value of N. Figure 3A 
shows that over six decades in the number of 
transitions N, A approaches zero in the manner 
described by Eq. 3. Thus, coarse-pined de- 
tailed balance is present for the far-from-equi- 
librium system characterized by Eq. 1 despite 
the underlying lack of true microscopic detailed 
balance. 

The presence of detailed balance at 
coarse-grained scales suggests that Eq. 1 
might also obey a coarse-grained Hamiltoni- 
an. The space of possible Hamiltonians is 
large; however, the underlying reflection 
symmetry f (u) = -f (-u) in Eq. 1 suggests a 
Hamiltonian with Ising symmetry: 

where the sum is over all possible pairs of spins 
and a(d) are the (reduced) couplings between 
spins at 2 and y, separated by a distance d = 
I I - ?I. (Only painvise interactions of "spins" 
~7: were included.) The couplings a(d) were 
determined by measuring the probability of each 
of the 216 states and performing a multidimen- 
sional fit to a Gibbs distribution P(Si) = 
exp[-X(Si)]/Z, where Z = 2,: exp[-X(Si)] is 
the partition function. The validity of the 
extracted couplings and of the Gibbs distri- 
bution itself is shown in Fig. 3B demon- 
strating a Gibbsian relation between the 
effective energy X(Si) of a coarse-grained 
state Si and its probability P(Si) extending 
over six decades. Thus, the coarse-grained 
system is obeying an underlying Hamiltoni- 
an of the form Eq. 4 and the system behaves 
as if it were in contact with a heat reservoir 
of some temperature T (that is, as a canon- 
ical ensemble). The presence of a coarse- 

couplings in equilibrium systems in the Ising 
universality class. As the size G is increased, the 
non-nearest-neighbor couplings quickly ap- 
proach zero (become irrelevant), with the cou- 
plings of farther neighbors approaching zero 
more quickly. The nearest-neighbor coupling 
a(1) also behaves as expected-on the para- 
magnetic side of the transition g < gc, a(1) 
flows toward a fixed point of a(1) = 0 (equiv- 
alent to temperature T + a),  whereas on the 
ferromagnetic side g > gc, a(1) flows toward 
the zero-temperature fixed point a(1) -+ a. 

Future large-scale computational studies are 
necessay to determine whether this behavior is 
also quantitatively consistent with the equilibri- 
um behavior. 

Simple, far-from-equilibrium, dissipative, 
extensively chaotic systems can recover the 
equilibrium properties of ergodicity, detailed 
balance, Gibbs distributions, partition functions, 
and renormalization group flow at coarse- 
grained scales with the underlying chaotic dy- 

,namics serving as a temperature bath. This re- 
markable result suggests that the long-wave- 
length behavior of some far-from-equilibrium 
systems can be understood by using the power- 
ful tools of equilibrium statistical mechanics. 
Studies are needed to explore the underlying 
mechanism for the rewvey of equilibrium and 
the range of far-from-equilibrium systems that 
are susceptible to such analysis. Systems with 
multiple length scales and that recover symme- 
tries at the coarse-pined scales might exhibit 
such behavior. Additional systems might be un- 
derstood through familiar techniques of statisti- 
cal mechanics that describe small excursions 
away from equilibrium. The system studied here 
possesses some important differences from true 
equilibrium systems. Perhaps the most intrigu- 
ing is that the effective noise strength (or tem- 

Fig. 3. (A) Relation between the number of tran- 
sitions N = T,,/ + 5,; and the square relative 
error ((AIN)Z) (where A = 7;,i - 7;.-i) for lo6 
different pairs of states i and j us~ng Eq. 1 with g = 
0.204 on a square periodic lattice of size 64 X 64 
with coarse-grain size C = 16 obtained over an 
interval T = 3.5 X 10' from an ensemble of 256 
systems. The averages are taken over all pairs of 
states with transition counts within bins that in- 
crease in size exponentially with the number of 
transitions. The solid line indicates the expected 
relation for perfect detailed balance. (B) Re- 
lation between the probability of a given 
state Si and its effective energy for the 65,160 
(out of 65,536) states with probabilities 
above for the same conditions as in (A). 
The effective energy used only the first four 
terms of Eq. 4, with parameters a(dLj) deter- 
mined through a least-squares fit: a(1) = 
0.685 a ( f i )  = 0.100, a(2) = -0.075, and 
a(&) = -0.049. The solid line is a guide to 
the eye for the expected power law for a 
Cibbs distribution. 

perature) is internally generated and dependent 
on the state of the system, rather than imposed 
by an external temperature bath. This difference 
poses a challenge for explorations of the second 
law of thermodynamics in these systems. 
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A Nucleation Site and 

Mechanism Leading to Epitaxial 


Growth of Diamond Films 

S. T. Lee,* H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, 

I. Bello, Y. Lifshitz'r 

A diamond nucleation site responsible for epitaxial growth of diamond on 
silicon by chemical vapor deposition (CVD) is identified in high-resolution 
transmission electron microscopic images. Other sites in the same sample 
leading to polycrystalline growth, but deleterious to  epitaxial CVD growth, are 
also described. A mechanism for the heteroepitaxial growth of diamond is 
suggested, in which etching of the nondiamond carbon binder exposes and 
removes nonadherent nanodiamond nuclei, leaving intact only those directly 
nucleated on the silicon substrate. This work enhances our understanding of 
diamond nucleation and heteroepitaxial growth and its potential applications. 

The quest for artificial methods of diamond 
production is motivated not only by its gem- 
stone quality, but also by its unique set of prop- 
erties, which make it an excellent candidate for 
numerous important applications (1-3). Dia-
mond was successfully produced in the 1950s 
by the high-pressure, high-temperature (HPHT) 
method (1, 2). An alternative method, CVD of 
diamond at low pressure (typically with the use 
of an excited CH,'H2 mixture on substrates held 
at -700" to 800°C), has also been applied suc- 
cessfully over the last 15 to 20 years (1-3). The 
homoepitaxial growth of diamond on a diamond 
substrate by CVD methods is relatively well 
understood (1-3). Experimental methods for di- 
amond nucleation on nondiamond substrates 
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(the first necessary step of a heteroepitaxial 
growth process) have also been developed (4- 
7). The most effective method uses bias-en-
hanced nucleation (BEN) (4, &lo), in which 
the target is biased, with a relatively methane- 
rich CH,/H2 mixture (several percent methane) 
as a first step, followed by a conventional CVD 
step (typically 1% methane or less). However, 
the nucleation mechanism of diamond on non- 
diamond substrates remains poorly understood 
(I  I), largely because of the tremendous difficul- 
ty of locating and identifying the nucleation 
sites. This is a major obstacle to further advanc- 
es in diamond science and technology. 

Here we present direct high-resolution 
transmission electron microscopy (HRTEM) 
evidence that a step on a single crystalline Si 
surface serves as a nucleation site for hetero- 
epitaxial diamond growth, and we propose a 
scheme for the growth of epitaxial diamond 
films on Si wafers. 

A BEN treatment with a double-bias-assist- 
ed hot filament CVD was used (12). In this 
process, a negative-bias voltage is applied to the 

ing t o  plots such as Fig. 3A actually appear t o  give 
better agreement than expected simply due to the extra 
crossings as the system wiggles from one state t o  the 
next. Temporal coarse-graining of AT 2 100 create a 
smoother (less "noisy") transition between states. 

23. The 2'" 	 states is a small enough number such that a 
large computational effort yields a large fraction of the 
states being visited often enough t o  give statistically 
significant results. Significantly larger lattices have too 
many states for meaningful simulations on today's 
computers. A coarse-grained lattice size o f  4 X 4 is also 
just large enough such that the dynamics is not over- 
whelmed by finite-size effects for a wide range of 
coupling values g. 
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Si substrate and a positive-bias voltage is ap- 
plied to a gnd that is placed on top of the hot 
filament (13). The samples were analyzed by 
HRTEM (13), high-resolution scanning electron 
microscopy (HRSEM), and micro-Raman spec- 
troscopy. Transmission electron microscopy 
(TEM) observations were made along the [I101 
direction of the Si substrate. 

HRSEM images of the samples show a 
rough, granular morphology, with an average 
grain size of about 200 nm. Raman spectrosco- 
py shows a dominant graphitic structure that has 
no detectable 1330 cm- ' diamond peak, but that 
does have a small peak indicative of "nanodia- 
mond precursors" at -1 100 c m  '. Cross-sec-
tional HRTEM (Fig. 1) shows a grooved Si 
morphology onto which a predominantly amor- 
phous C (a-C) film is deposited, which explains 
the Raman data. Diamond crystallites with di- 
ameters of about 2 to 6 nm (small enough to 
identify the nucleation sites) are either embed- 
ded in the a-C mahix (white arrows in Fig. 1 ) or 
attached to different sites of the Si (black ar- 
rows). Selected-area electron diffraction pat- 
terns confirmed the diamond structure of the 
nanocrystallites. No Sic  crystallites were found. 
The diamond crystallites grew randomly (Fig. 
2), partially epitaxially (Fig. 3), or perfectly 
heteroepitaxially (Fig. 4) with respect to the Si 
surface. In Fig. 3, a set of diamond { 1 1 1 ) planes 
is parallel to the Si { 11 1 ) planes, which indi- 
cates a partially oriented diamond nucleus on Si. 
The interface between the nucleus and Si near 
the (001) plane of Si could not be resolved. In 
Fig. 4, two nuclei have grown epitaxially on 
stepped areas of the Si substrate. Five to 10 such 
nuclei have been observed in each of the six 
samples studied. The diamond c~ystallites were 
identified by measuring the spacings of the lat- 
tice fringes and the angles of the Intersecting 
lattice planes. This measurement is very precise 
because the Si (1 11) lattice in the same image 
can be used as an internal reference. In Fig. 4A, 
the interfaces between the diamond crystallite 
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