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visualized on 15% denaturing polyacrylamide gels 
using tricine buffer. All stable fragments larger than 2 
kD were identified through NH,-terminal sequencing 
and mass spectrometric analyses. 

12. Mutant 	constructs were generated using standard 
polymerase chain reaction-based cloning strategy, 
and the identities of individual clones were verified 
through double-strand plasmid sequencing. The 
Smad-binding fragment from SARA (residues 665- 
721) was overexpressed in Escherichia coli strain 
BLZl(DE3) as a glutathione S-transferase (GST)-fu- 
sion protein using a pGEX-2T vector (Pharmacia) and 
was purified by a glutathione sepharose 48 affinity 
column. The MH2 domain from Smad2 (residues 
241-467) was overexpressed in a pET3d vector (No- 
vagen). The soluble fraction of Smad2 MH2 in the E. 
coli lysate was purified by cation-exchange chroma- 
tography (SP-sepharose; Pharmacia) and gel-filtration 
chromatography (Superdex-75 column; Pharmacia). 
Equimolar amounts of GST-SARA SBD and Smad2 
MH2 domain were mixed and incubated in 25 mM 
NaMES (pH 6.0), 50 mM NaCI, and 2 mM dithiothre- 
itol (DTT). The complex was then passed through an 
cation-exchange column (SP-sepharose; Pharmacia), 
to which Smad2 MH2 domain binds avidly. CST- 
SARA SBD in isolation does not bind this column. 
Smad2 binding to the column has no effect on inter- 
action with SARA. The bound complex was eluted 
from this column with 1 M NaCl and visualized on 
15% SDS-polyacrylamide gel electrophoresis. 

13. Proteins of the Smad2 MH2 domain and SARA SBD 
were individually purified and mixed in a 1 : l  molar 
ratio. The final complex was concentrated and puri- 
fied through gel-filtration chromatography (Super- 
dex-75 column; Pharmacia). The concentration of the 
complex is -20 mglml. Heavily twinned crystal clus- 
ters were grown at 4°C by the hanging-drop vapor- 
diffusion method by mixing the SARA-Smad2 protein 
complex with an equal volume of reservoir solution 
containing 100 mM Tris buffer (pH 8.5), 10% Dioxane 
(v/v), 2.0 M ammonium sulfate, and 10 mM DTT. 
Streak-seeding followed by three rounds of macro- 
seeding eventually generated crystals suitable for 
x-ray diffraction. The crystals, with a typical size of 
0.1 mm by 0.1 mm by 0.4 mm, are in the trigonal 
space group P3121, with unit cell dimensions a = b 
= 138.5 A, c = 55.9 A, LY = P = 90°, y = 120°, and 
contain two complexes in the asymmetric unit. Initial 
diffraction data were collected using an R-AXISIIC 
imaging plate detector mounted on a Rigaku 2OOHB 
generator. High-resolution data sets were collected 
at beamline X25 at the National Synchrotron Light 
Source (NSLS), Brookhaven National Laboratory. All 
data sets were collected under freezing conditions: 
crystals were equilibrated in a cryoprotectant buffer 
containing 100 mM Tris buffer (pH 8.5). 10% Dioxane 
(v/v), 2.0 M ammonium sulfate, and 20% glycerol, 
and were flash frozen under a -170°C nitrogen 
stream. The structure was primarily determined by 
molecular replacement using the software AMoRe [J. 
Navaza, 1. Acta Ciystallogr. A 50. 157 (1994)l. The 
atomic coordinates of Smad4 MH2 were used for a 
rotational search against a 15-3.5 A data set. The top 
50 solutions from the rotational search were individ- 
ually used for a subsequent translational search, 
which yielded one solution with a correlation factor 
of 20.8 and an R-factor of 52.4%. This solution was 
used to locate the second complex in the crystals. 
Together, these two solutions gave a combined cor- 
relation factor of 33.5 and an R-factor of 44%. This 
model was examined with the program 0 IT. A. Jones 
et al., Acta Crystallogr. A 47. 110 (1991)], and the 
Smad4 side chains were replaced with those of 
Smad2. Refinement by simulated annealing with the 
program X-PLOR (A. T. Brunger, Yale University), 
against a 3.0 A native data set decreased the R 
factor and R free to 35% and 42%. respectively. 
Refinement against 2.2 A resolution data allowed 
progressive identification of the SARA fragment. 
The final refined model contains two complexes of 
Smad2 (residues 263-456) and SARA (residues 
669-709), and 243 water molecules. The NH2- and 
COOH-terminal residues in Smad2 have no elec- 
tron density, and we presume that these regions 
are disordered in the crystals. The two complexes 
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Generating Solitons by Phase 

Engineering of a Bose-Einstein 


Condensate 

J. Denschlag,' J. E. Sirnsarian,' D. 1. Feder,'.' Charles W. Clark,' 

L. A. Co l l in~ ,~  1. Deng,' E. W. Hagley,'J. 	 C~bizolles, '~~ 
K. Helmerson,' W. P. Reinhardt,'s5 S. 1. Rolston,' B. I. S~hneider,~ 

W. D. Phillips' 

Quantum phase engineering is demonstrated with two  techniques that allow 
the spatial phase distribution of a Bose-Einstein condensate (BEC) t o  be written 
and read out. A quantum state was designed and produced by optically im- 
printing a phase pattern onto a BEC of sodium atoms, and matter-wave in- 
terfe~ometry with spatially resolved imaging was used t o  analyze the resultant 
phase distribution. An appropriate phase imprint created solitons, the first 
experimental realization of this nonlinear phenomenon in a BEC. The subse- 
quent evolution of these excitations was investigated both experimentally and 
theoretically. 

Ultimate control over a physical system can imaged onto a condensate shapes its phase 
be achieved by precisely manipulating its almost arbitrarily in two dimensions (2-4). 
quantum mechanical wave function, which Matter-wave interferometry (5)using optical- 
fully characterizes its state. A BEC of a dilute ly induced Bragg diffraction (6, 7) is then 
gas (I) is particularly well suited for such used to analyze the spatial phase distribution 
manipulations because of its directly observ- by direct imaging (8). These methods are 
able wave function: It has many identical applied in experimental studies of a phenom- 
atoms in the same quantum state, and it is enon in nonlinear atom optics (9 ) , the prop- 
large enough to be optically imaged. agation of solitons [solitary waves ( l o ) ]in a 

We demonstrate two optical techniques to BEC. Three-dimensional (3D) numerical cal- 

prepare and measure the phase of a BEC culations agree well with and substantiate the 

wave function. A chosen pattern of laser light experimental observations of soliton genera- 


tion and propagation. Both reveal the rich 

dynamics of this nonlinear system, such as 
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optic communications (13). Solitons may be 
either bright or dark, depending on the details 
of the governing nonlinear wave equation. A 
bright soliton is a peak in the amplitude; a 
dark soliton is a notch with a characteristic 
phase step across it. 

A weakly interacting BEC obeys a non- 
linear wave equation that supports solitons, 
as shown by recent theoretical studies (14- 
17). At zero temperature, this wave equation 
is known as the Gross-Pitaevskii equation 
(181, 

where IJJ is the condensate wave function 
normalized to the number of atoms, V is the 
trapping potential, M is the atomic mass, A is 
the Planck constant divided by 2 n  and g 
describes the strength of the atom-atom inter- 
action (19). Solitons propagate without 
spreading (dispersing) because the nonlinear- 
ity balances the dispersion; for Eq. 1, the 
corresponding terms are the nonlinear inter- 
action g l ~ l and the kinetic .energy -(A2/ 
2M)V2, respectively. Our sodium condensate 
only supports dark solitons because the atom- 
atom interactions are repulsive ( g  > 0). 

A distinguishing characteristic of a dark 
soliton is that its speed is less than the Bogo- 
liubov speed of sound, u, = (gn/M)'I2 (18, 
20), where n = l I JJo l  is the unperturbed 
condensate density. The soliton speed us can 
be expressed in terms of either the phase step 
6 (0 < 6 5 n )  or the soliton "depth" n,, 
which is the difference between n and the 
density at the bottom of the notch (14, 15): 

For 6 = .rr, the soliton has zero velocity, zero 

Fig. 1. (A) Writing a phase step onto the con- 
densate. A far-detuned uniform light pulse 
projects a mask (a razor blade) onto the con- 
densate. Because of the light shift, this imprints 
a phase distribution that is proportional to the 
light intensity distribution. A lens (not shown) 
is used to image the razor blade onto the 
condensate. The mask in (B) writes a phase 
stripe onto the condensate. The mask in (C) 
imprints an azimuthally varying phase pattern 
that can be used to create vortices. 

density at its center, a width on the order of 
the healing length 5 = (2nMg/A2)-'I2 (IS), 
and a discontinuous phase step. As 6 decreas- 
es, the speed increases and approaches the 
speed of sound. The solitons become shal- 
lower and wider and have a more gradual 
phase step (15). They travel opposite to the 
direction of the phase gradient. Because a 
soliton has a characteristic phase step, opti- 
cally imprinting a phase step on the BEC 
wave function should be a way to create a 
soliton. 

Phase imprinting. We performed our ex- 
periments with a condensate having -2 X 
lo6 sodium atoms in the 3SIl2, F = 1, m, = 
- 1 state, with no discernible thermal fraction 
(7). The condensate was held in a magnetic 
trap with trapping frequencies ox = fro,, = 
20, = 2~ X 28 Hz. The Thomas-Fermi 
diameters (18) were 45, 64, and 90 pm, 
respectively. Initially the BEC, described by 
the ground-state solution of Eq. 1, had a 
uniform phase (21, 22). 

We modified the phase distribution of the 
BEC by exposing it to pulsed, off-resonant laser 
light with an intensity pattern I(x,y) (Fig. 1). In 
this process, the atoms experience a spatially 
varying light-shift potential U(x,y) = (AT2/ 
8A)[I(x,y)/Io] and acquire a corresponding 
phase +(x,y) = -U(x,y)T/A. Here r is the 
transition line width, I, is the saturation inten- 
sity, A is the detuning of the laser from the 
atomic resonance, and T is the laser pulse du- 
ration (23). We chose T to be short enough so 
that the atomic motion was negligible during 
the pulse (Raman-Nath regime). In this limit, 
the effect of the pulse can be expressed as a 
sudden phase imprint, which modifies the ini- 
tial wave function: IJJ + IJJ exp[i+(x,y)] (24). 

Interferometry. We measured the imprint- 

ed phase distribution of the condensate wave 
function with a Mach-Zehnder matter-wave in- 
terferometer that makes use of optically in- 
duced Bragg diffraction (25, 26). Our Bragg 
interferometer differs from previous ones in 
that we can independently manipulate atoms in 
the two arms (because of their large separation) 
and can resolve the output ports to reveal the 
spatial distribution of the condensate phase. In 
our interferometer, a Bragg pulse splits the 
initial condensate into two states, IA) and IB), 
differing only in their momenta (Fig. 2). After 
they spatially separate, the phase step (Fig. 1A) 
is imprinted on IA), while IB) is unaffected and 
serves as a phase reference. When recombined, 
they interfere according to their local phase 
difference. Where this phase difference is 0, 
atoms appear in port 1, and where it is n atoms 
appear in port 2. Imaging the density distribu- 
tions of ports 1 and 2 displays the spatially 
varying phase (27). The image in Fig. 2 shows 
the output of the interferometer when a phase of 
n was imprinted on the upper half of IA) (28). 
The high-contrast "half moons" are direct evi- 
dence that we can control the condensate spatial 
phase distribution and, in particular, imprint the 
phase step appropriate for a soliton (29). 

Soliton propagation. To observe soliton 
propagation, we did not use interferometry 
(30) but instead measured BEC density dis- 
tributions with absorption imaging (1, 27) 
after imprinting a phase step (31). Figure 3, A 
to E, shows the evolution of the condensate 
after the top half was phase-imprinted with 
+, - 1.5n, a phase for which we observed a 
single deep soliton (the reason for imprinting 
a phase step larger than n is discussed be- 
low). Immediately after the phase imprint, 
there is a steep phase gradient across the 
middle of the condensate such that this por- 

Bragg beam 1 
x 

Port 2 - 

Time 50 prn 

Fig. 2. Space-time diagram of the matter-wave interferometer used to measure the spatial phase 
distribution imprinted on the BEC. Three optically induced Bragg diffraction pulses (7) formed the 
interferometer. Each pulse consisted of two counterpropagating laser beams detuned by -2 CHz 
from atomic resonance (so that spontaneous emission is negligible), with their frequencies differing 
by 100 kHz. The first Bragg pulse had a duration of 8 ps and coherently split the condensate into 
two components IA) and 16) with equal numbers of atoms; [A) remained at rest and 16) received two 
photon recoils of momentum. When they were completely separated, we applied the 500-11s phase 
imprint pulse to the top half of /A), which changed the phase distribution of [A) while IS) served as 
a phase reference. A second Bragg pulse (duration 16 ps), 1 ms after the first pulse, brought IS) to 
rest and imparted two photon momenta to IA). When they overlapped again, 1 ms later, a third 
pulse (duration 8 ps) converted their phase differences into density distributions at ports 1 and 2. 
The image shows the output ports 1 and 2 as seen when we imprinted a phase step of T (29). 
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tion has a large velocity in the +x direction. 
This velocity, which can be understood as 
arising from the impulse imparted by the 
optical dipole force, results in a positive den- 
sity disturbance that travels at or above the 
meed of sound. A dark notch is left behind: 
this is a soliton moving slowly in the -x 
direction (opposite to the direction of the 
applied force). 

We have numerically solved Eq. 1 in three 
dimensions through the application of real- 
space product formulas (32) and by using a 
discrete variable representation of the wave 
function (33) based on Gauss-Chebyshev 
quadrature with 50 to 400 spatial grid points 
in each dimension; in the latter approach, the 
time dependence of the solution was obtained 
by Runge-Kutta integration. Figure 3, F to J, 
shows the results of the simulations where the 
experimental phase imprint is approximated 
as +(x,y) = (+,/2)[1 + tanh(x/l)], where 
+, = 1 . 5 ~ ,  and 1 = 2 pm corresponds to an 
imprinting resolution of -4.4 pm (27, 34). 
The calculated and experimental images are 
in very good agreement. 

A striking feature of the images is the 
curvature of the soliton. This curvature arises 
from the 3D geometry of the trapped conden- 
sate and occurs for two reasons. First, the 
speed of sound uo is largest at the trap center, 
where the density is greatest, and decreases 
toward the condensate edge. Second, as the 
soliton moves into regions of lower conden- 
sate density, we find numerically that the 
density at its center (n - n,) approaches zero, 
6 approaches n, and u, decreases to zero 
before reaching the edge. The soliton stops 
because its depth n,, rather than its phase 
offset 6, appears to be a conserved quantity in 
a nonuniform medium. 

Soliton speed. The subsonic propagation 
speed of the notches seen in Fig. 3 shows that 
they are solitons and not simply sound waves. 
To determine this speed, we measured the 
distance after propagation between the notch 
and the~position of the imprinted phase step 
along the direction indicated in Fig. 3H. Be- 
cause the position of our condensate varied 
randomly from one shot to the next (presum- 
ably because of stray, time-varying fields), 
we could not always apply the phase step at 
the center. A marker for the location of the 
initial phase step is the intersection of the 
soliton with the condensate edge, because at 
this point the soliton has zero velocity. By 
using images taken 5 ms after the imprint, at 
which time the soliton had not traveled far 
from the BEC center, we obtained a mean 
soliton speed of 1.8 + 0.4 m d s  (35). This 
value is significantly less than the mean 
Bogoliubov speed of sound, u, = 2.8 + 0.1 
m d s .  From the propagation of the notch in 
the numerical simulations (Fig. 3, F to J), we 
obtained a mean soliton speed, us = 1.6 
m d s ,  in agreement with the experimental 

value. The experimental uncertainty is main- 
ly due to the difficulty in determining the 
position of the initial phase step. 

We can also compare the results of the 
numerical 3D solutions of Eq. 1 to the ana- 
lytical predictions of Eq. 2, which describes a 
traditional dark soliton in a homogeneous, ID 
geometry. We calculated the soliton speed 
using a local density approximation in Eq. 2 
[n = I T0(r) 1 2, where T0(r) is the ground- 
state solution of Eq. 11 from either the phase 

and other excitations near x = 20 pm moving 
rapidly to the right. Most .of these features are 
not well resolved in the experimental images 
(Fig. 3, A to E). We observed both experimen- 
tally and theoretically that when the imprinted 
phase step is increased, the weak soliton on the 
left becomes deeper; when the phase step is 
lowered, both solitons become shallower and 
propagate faster. 

We could avoid the uncertainty in the 
position of the initial phase step and improve 

or depth of the solitons obtained in the 3D our measurement of the soliton speed by 
simulations. In every case examined, this replacing the step mask (Fig. 1A) with a thin 
speed is in excellent agreement with the re- slit (Fig. 1B). The thin slit produced a stripe 
sults of 3D numerical simulations. of light with a Gaussian profile (l/e2 full 

Figure 4 shows the theoretical density and width = 15 pm). With this stripe in the center 
phase profile along the x axis through the center of the condensate, numerical simulations pre- 
of the condensate 5 ms after the +, = 1 . 5 ~  dict the generation of solitons that propagate 
phase imprint (Fig. 3H). The dark soliton notch symmetrically outward. We selected experi- 
and its phase step are centered at x = -8 pm. 
This phase step, 6 = 0 . 5 8 ~  is less than the 
imprinted phase of 1 . 5 ~ .  The difference is 
caused by the mismatch between the phase 
imprint and the phase and depth of the soliton 
solution of Eq. 1: Our imprinting resolution 
(27) is larger than the soliton width, which is on 
the order of the healing length ( 5 - 0.7 pm), 
and we do not control the amplitude of the 
wave hc t ion .  The mismatch produces features 
in addition to the deep soliton, such as a shallow 

mental images with solitons symmetrically 
located about the middle of the condensate 
and measured the distance between them. 
Figure 5A shows the separation of the pair of 
solitons as a function of time. For a small 
phase imprint of +, - 0 . 5 ~  at Gaussian 
maximum, we observed solitons moving at 
the Bogoliubov speed of sound within exper- 
imental uncertainty. For a larger phase im- 
print of +, - 1.5n, we observed a much slower 
soliton propagation, in agreement with numer- 

dark soliton at x = - 14 pm moving to the left ical simulations. An even larger phase imprint 

1 rns 2 rns 5 ms 7 ms 10 ms 

Fig. 3. Experimental (A to  E) and theoretical (F to  J) images of the integrated BEC density for 
various times after we imprinted a phase step of - 1 . 5 ~  on the top half of the condensate with a 
I-IJ,~ pulse. The measured number of atoms in the condensate was 1.7 (20.3) X lo6, and this value 
was used in the calculations. A positive density disturbance moved rapidly in the +x direction, and 
a dark soliton moved oppositely at significantly less than the speed of sound. Because the imaging 
pulse (27) is destructive, each image shows a different BEC. The width of each frame is 70 pm. 

. . , 2.0 Fig. 4. Calculated density and phase 
I along thex axis (dashed line in Fig. 3H) at 
i 0 ms (thin lines) and at 5 ms (thick lines) 

after applying a phase step imprint of 

- 1.0 
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Fig. 5. (A) Plot of sep- A 
aration versus time for 40 ' 

Q0 =0.5~ two oppositely propa- 
gating solitons after a 
phase imprint in the E 
form of a stripe. For 30 - 
a small phase imprint $ 
(4, ..: O S a ,  squares), 'z 
the solitons move at ;;j 
almost the local speed $ 20 - 
of sound. For a larger Qo =I .5n 
phase imprint (4, - 
1.5n, circles), they 
are much slower. The 
dashed lines are from 
numerical simulations, Time (ms) 
from which we extract 
speeds for the corresponding solitons of 2.56 mmls (4, = 0.5~)  and 
(6) The condensate 6 ms after a stripe phase imprint of 4, - 1.5~. 
4, - 2a many solitons appeared. 

1.75 mmls (4, = 1 . 5 ~ )  at 4 ms. 
(C) For a larger phase imprint of 

generates many solitons (Fig. 5C). 
The lower theoretical curve in Fig. 5A 

shows that the speed of the corresponding 
solitons (the slope of the curve) approaches 
zero at a separation of -33 p m  before they 
reach the edge of the condensate (whose 
Thomas-Fermi diameter is 45 pm). This re- 
sult follows directly from Eq. 2. Assuming a 
constant soliton depth t ~ ,  and working in the 
Thomas-Fermi limit, the derivative of us with 

phase winding of the vortex wave function 
around its core can be imprinted by imaging 
an intensity pattern with a linear azimuthal 
dependence (Fig. 1 C). Quantized vortices in a 
BEC are a manifestation of superfluidity and 
have recently been observed in a two-com- 
ponent condensate (4) and a condensate in a 
rotating trap (36). We note that a group in 
Hannover, Germany, has independently stud- 
ied solitons in a BEC using optical phase 

respect to time yields the equation of motion imprinting (37). 
duJdt = d2xSldt2 = -02xJ2. Thus, the soli- 
ton in a 1D trap should oscillate harmonically 
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Equilibrium Regained: From 

Nonequilibrium Chaos to 


Statistical Mechanics 

David A. Egolf 

Far-from-equilibrium, spatially extended chaotic systems have generally eluded 
analytical solution, leading researchers t o  consider theories based on a statis- 
tical rather than a detailed knowledge of the microscopic length scales. Building 
on the recent discovery of a separation of length scales between macroscopic 
behavior and microscopic chaos, a simple far-from-equilibrium spatially ex- 
tended chaotic system has been studied computationally a t  intermediate, 
coarse-grained scales. Equilibrium properties such as Cibbs distributions and 
detailed balance are recovered at  these scales, which suggests that the mac- 
roscopic behavior of some far-from-equilibrium systems might be understood 
in  terms of equilibrium statistical mechanics. 

Statistical mechanics describes the macro-
scopic physical properties of matter through a 
probabilistic, rather than a detailed, knowl- 
edge of the microscopic dynamics and has 
been applied successfully to a wide variety of 
equilibrium systems, from simple molecular 
gases to white dwarf stars. It has provided a 
theoretical understanding of the phases of 
matter, the transitions between phases, and 
the deep property of universality that unifies 
the descriptions of continuous transitions in 
systems that are physically quite distinct (for 
example, magnets and gases). In nature, how- 
ever, many systems are not in equilibrium, 
including, for example, large-scale flows in 
the atmosphere, the evolution of ecological 
systems, and the transport of energy in cells. 
None of these situations can be understood 
with equilibrium statistical mechanics. 

Although theory has been developed to ex- 
tend equilibrium statistical mechanics to sys- 
tems only slightly perturbed away from equilib- 
rium (for which the evolution of the system is 
well-approximated with only linear terms), in 
deterministic systems dnven far from equilibri- 
um (where nonlinearities are important) theoret- 
ical progress has been limited to "simple" situ- 
ations, such as the onset of symmetry breaking, 
the stability of perfect patterns, and the motions 
of single topological defects in perfect patterns 
(1). Theorists have not yet developed an under- 
standing of the intriguing phenomenon of "spa- 
tiotemporal chaos" (or spatially extended chaos) 
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that is typically characterized by disordered ar- 
rays of defects, patches of uncorrelated regions, 
and a chaotic dynamics that persists indefinitely 
(2). This remarkable behavior has been found in 
large, deterministic, far-from-equilibrium sys- 
tems as varied as convecting horizontal fluid 
layers (3), chemical reaction-diffusion systems 
(4 ) ,colonies of microorganisms (5), and fibril- 
lating heart tissue (6). These disparate systems 
often display strikingly similar macroscopic fea- 
tures (such as locally ordered striped or hexag- 
onal patterns and dislocation, spiral, and target 
defects) and behavior (for example, dramatic 
qualitative changes in response to modifications 
of experimental parameters reminiscent of phase 
transitions in equilibrium systems). Such behav- 
ior within a system and the similarities between 
different systems beg the question of whether 
one can construct a statistical, predictive theory 
of phases and transitions in these chaotic, far- 
from-equilibrium systems. 

At first glance, far-from-equilibrium, 
strongly dissipative, deterministic systems may 
appear to have little in common with equilibri- 
um systems; for example, at the detailed level, 
these systems do not have the benefit of tending 
toward the minimum of a free-energy function- 
al, do not have a Gibbsian distribution of states, 
and do not allow the calculational technique of 
averages over noise terms. However, several 
experimental and computational studies have 
explored the similarities in the behaviors of 
these systems and the behaviors of equilibrium 
systems. A particular focus has been the possi- 
bility of phase transition-like behavior in these 
systems (4, 7-11). The data reported here un- 
cover a deeper level of similarity and suggest 
the possibility of salvaging much of the frame- 

work of equilibrium statistical mechanics. In 
particular, large-scale computational studies of a 
simple, large, chaotic, far-from-equilibrium sys- 
tem demonstrate that several cornerstones of 
equilibrium statistical mechanics-ergodicity, 
detailed balance, Gibbs distributions, partition 
filnctions, and renormalization group flows of 
coupling constants-are recovered at a coarse- 
grained scale. 

In analogy to the simple explorations of 
equilibrium statistical mechanics with the Ising 
model, one of the simplest spatially extended 
chaotic systems was used as a test bed (12). This 
system, a coupled map lattice (CML) first stud- 
ied by Miller and Huse (8), consists of a set of 
scalar variables ui at integer time t on a square 
hvo-dimensional spatially periodic L X L gnd 
with positions indicated by .? = a? + b?;,where 
a and b are integers and 1 and ,C are the unit 
vectors of the two-dimensional lattice. The rule 
for updating the variables from time t to t + 1 is 

ll.;+' = +(I!;) + gC[+(ll:?) - +(11;)] 
i,i !  

(la) 
where g indicates the strength of the spatial 
coupling, and ,?(i)denotes nearest neighbors 
of site ,?. The chaotic local map +(u) is given 
by 

( lb)  
This CML exhibits chaotic, spatially disordered 
dynamics for values of g at least within the 
range [O, 0.251. Miller and Huse (8) reported 
that at g,. == 0.2054, this system undergoes a 
parama~etic-to-ferromagnetic transition ex-
hibiting a number of features in common with 
the equilibrium transition in the Ising ferromag- 
net (13). 

To study the statistical bulk properties of 
spatially extended chaotic states ["extensive 
chaos" (1, 14)], the "thermodynamic limit" 
of systems approaching infinite size was tak- 
en. O'Hern et al. (15) demonstrated that the 
behavior of Eq. 1 can be considered extensive 
for system sizes as small as L == 9. Results 
reported here were obtained for system sizes 
ranging from 1 X 1 to 1024 X 1024 over 
times as large as 10'' iterations (after typi- 
cally 10' iterations of transient), often aver- 
aged over ensembles of up to 256 systems 
with identical parameters but differing initial 
conditions [with each site u;=O initialized to a 
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