The degradation rate of MKP-1 after activation of p42^{MAPK} or p44^{MAPK} was less than half that in the absence of estradiol. Under the same conditions, the degradation rate of inhibitor of $\kappa B\alpha$ (I $\kappa B\alpha$) in response to tumor necrosis factor- α was unaltered in ΔRaf -1::ER-expressing cells after addition of estradiol (*18*). Hence, phosphorylation of MKP-1 by p42^{MAPK} or p44^{MAPK} serves to reduce ubiquitin-dependent degradation of the phosphatase. Activation of p42^{MAPK} or p44^{MAPK} therefore regulates MKP-1 protein expression through both an upregulation of the rate of transcription (*7*) and a reduction in the rate of proteasome-mediated degradation.

The p42^{MAPK} and p44^{MAPK} enzymes have a central role in the capacity of cells to divide in response to growth factors. Activation of p42^{MAPK} and p44^{MAPK} is a prerequisite for cell-cycle reentry (*3*). However, inappropriate or constitutive activation of the p42^{MAPK} or p44^{MAPK} cascade may provoke cellular senescence (*25*). Taken together, these findings illustrate a complex control mechanism designed to limit undesirable long-term activation of p42^{MAPK} and p44^{MAPK} and further demonstrate the importance of regulated protein degradation to the control of cell division processes.

References and Notes

- M. J. Robinson and M. H. Cobb, *Curr. Opin. Cell Biol.* 9, 180 (1997); P. Cohen, *Trends. Cell. Biol.* 7, 353 (1997); T. S. Lewis, P. S. Shapiro, N. G. Ahn, *Adv. Cancer Res.* 74, 49 (1998).
- C. M. Crews, A. Alessandrini, R. L. Erikson, Science 258, 478 (1992); R. Seger et al., J. Biol. Chem. 267, 14373 (1992); J. Wu et al., Mol. Cell. Biol. 13, 4539 (1993); C. F. Zheng and K. L. Guan, J. Biol. Chem. 268, 11435 (1993).
- G. Pages et al., Proc. Natl. Acad. Sci. U.S.A. 90, 8319 (1993); H. Sun, N. K. Tonks, D. Bar-Sagi, Science 266, 285 (1994); J. A. Frost, T. D. Geppert, M. H. Cobb, J. R. Feramisco, Proc. Natl. Acad. Sci. U.S.A. 91, 3844 (1994); J. Troppmair et al., J. Biol. Chem. 269, 7030 (1994); J. M. Brondello, F. R. McKenzie, H. Sun, N. K. Tonks, J. Pouysségur, Oncogene 10, 1895 (1995).
- S. M. Keyse and E. A. Emslie, *Nature* **359**, 644 (1992);
 C. H. Charles, A. S. Abler, L. F. Lau, *Oncogene* **7**, 197 (1992);
 T. Noguchi *et al.*, *Mol. Cell. Biol.* **13**, 5195 (1993).
- 5. S. M. Keyse, Semin. Cell Dev. Biol. 9, 143 (1998).
- D. Bokemeyer et al., J. Biol. Chem. 271, 639 (1996);
 S. J. Cook, J. Beltman, W. A. Cadwallader, M. McMahon, F. McCormick, J. Biol. Chem. 272, 13309 (1997);
 J. C. Scimeca, M. J. Servant, J. O. Dyer, S. Meloche, Oncogene 15, 717 (1997).
- J. M. Brondello, D. Roux, G. Pages, J. Pouysségur, F. R. McKenzie, unpublished results; J. M. Brondello, J. Pouysségur, F. R. McKenzie, *J. Biol. Chem.* 272, 1368 (1997).
- 8. Cell lysis and protein immunoblotting of MKP-1 and -2 were performed exactly as described (7). For immuno-precipitation of MKP-1, cells were washed with ice-cold phosphate-buffered saline (PBS) and lysed with Triton X-100 lysis buffer [50 mM tris-HCl (pH 7.5), 100 mM NaCl, 50 mM NaF, 5 mM EDTA, 40 mM β-glycerophosphate, 200 μM sodium orthovanadate, 10⁻⁴ M phenyl-methylsulfonyl fluoride, leupeptin (1 μg/ml), 1 μM pept-statin A, and 1% (v/v) Triton X-100] as described for protein immunoblot analysis. Proteins from lysates (400 μg) were incubated with antibodies to MKP-1 (7) pread-sorbed to protein A–Sepharose–coated beads for 2 hours at 4°C. Immune complexes were washed three times

with Triton X-100 lysis buffer before resolution on SDS-PAGE (9% gels).

- R. W. King, R. J. Deshaies, J.-M. Peters, M. W. Kirschner, *Science* 274, 1652 (1996); M. Hochstrasser, *Annu. Rev. Genet.* 30, 405 (1996).
- 10. J. Adams and R. Stein, Annu. Rep. Med. Chem. **31**, 279 (1996).
- 11. G. Fenteany et al., Science 268, 726 (1995).
- M. Treier, L. M. Staszewski, D. Bohmann, Cell 78, 787 (1994).
- The His6-tagged expression vectors were as described (12). Purification of MKP-1-ubiquitin conjugates was performed exactly as described (12).
- P. Lenormand, M. McMahon, J. Pouysségur, J. Biol. Chem. 271, 15762 (1996).
- 15. In vitro kinase assays were performed in 50 mM Hepes (pH 7.5), 20 mM MgCl₂, 1 mM dithiothreitol, and 10 mM p-NPP with either 500 μM adenosine triphosphate (ATP) or 50 μM ATP and [³²P_Y]ATP [2 μCi per sample together with 1 ng of active p44^{MAPK} (16) or GSTp45^{MEK} (S/D, S/D; D, Asp), which was purified in *Escherichia* coli as a GST fusion protein and purified by binding to glutathione-Sepharose]. Reactions were terminated by addition of 1% SDS and 4 M urea and resolution of samples on SDS-PAGE (9% gels).
- A. Khokhtalchev et al., J. Biol. Chem. 272, 11057 (1997).
- 17. CCL39 cells (2.5 \times 10⁶ cells per well, six-well plate) were lysed in Triton X-100 lysis buffer [50 mM tris-HCl (pH 7.5), 100 mM NaCl, 50 mM NaF, 5 mM EDTA, 10⁻⁴ M phenylmethylsulfonyl fluoride, leupeptin (1 µg/ml), 1 µM pepstatin A, and 1% (v/v) Triton X-100; phosphatase λ was added together with MnCl₂ (1 mM final)]. After 15 min, reactions were stopped by addition of 1% SDS and 4 M urea, and samples (50 µg of protein) were resolved on SDS-PAGE (9% gel) and immunoblotted to detect MKP-1 (7).
- 18. J.-M. Brondello and F. R. McKenzie, unpublished results; K. Guan, S. S. Broyles, J. E. Dixon, *Nature* **350**, 359 (1991). Immunoprecipitated MKP-1 phosphatase activity was measured in 200 μl of solution containing 10 mM Imidazole (pH 7.5), 0.1% β-mercaptoethanol, and 10 mM p-NPP at 30°C for the times indicated. The reaction was stopped by addition of 500 μl of 0.25 M NaOH. Absorbance at 410 nm was measured. Nonspecific p-NPP hydrolysis in immunoprecipitates of cells transfected with vector was subtracted from the data.
- 19. MKP-1 underwent polymerase chain reaction-directed mutagenesis with the following primers: ATG

primer, 5'-GCCAGCCATGGTCATGGAAGTG-3'; S364A primer, 5'-GCAGCTGGGAGCGGTCGTAATGGGGCT-CTGAAGGTAGC-3'; S359A primer, 5'-GCAGCTGGG-AGAGGTCGTAATGGGGGCCTGAAGGTAGC-3'; S359/ 364A primer, 5'-GCAGCTGGGAGCGGTCGTAATGG-GGGCCTGAAGGTAGC-3'; and truncation at amino acid 340 primer, 5'-GTTGAACACGGTGGTGGTGGA-3'. After amplification, DNA was subcloned into pCRII followed by pcDNA3.1(+) in frame with a Myc-epitope tag. All mutations were verified by sequencing.

- I. Clark-Lewis, J. S. Sanghera, S. L. Pelech, J. Biol. Chem. 266, 15180 (1991); F. A. Gonzalez, D. L. Raden, R. J. Davis, J. Biol. Chem. 266, 22159 (1991).
- J. W. Haycock, N. G. Ahn, M. H. Cobb, E. G. Krebs, *Proc. Natl. Acad. Sci. U.S.A.* 89, 2365 (1992); S. Corbalan-Garcia, S.-S. Yang, K. R. Degenhardt, D. Bar-Sagi, *Mol. Cell. Biol.* 16, 5674 (1996).
- 22. Serines 359 and 364 within the consensus sequence XXSP, where X represents a neutral or basic amino acid, are present in MKP-1 (mouse and human sequences) and MKP-2 (human and rat sequences). MKP-1 and -2 share 62% overall sequence identity.
- N. Rivard, F. R. McKenzie, J.-M. Brondello, J. Pouysségur, J. Biol. Chem. 270, 11017 (1995); B. G. Neel and N. K. Tonks, Curr. Opin. Cell Biol. 9, 193 (1997).
- K. Okazaki and N. Sagata, *EMBO J.* **14**, 5048 (1995);
 A. M. Musti, M. Treier, D. Bohmann, *Science* **275**, 400 (1997).
- J. Zhu, D. Woods, M. McMahon, J. M. Bishop, Genes Dev. 12, 2997 (1998); A. W. Lin et al., Genes Dev. 12, 3008 (1998).
- 26. After MKP-1 immunoprecipitation (7), active p44^{MAPK} (10 ng/ml) was added to immunoprecipitates in a final volume of 100 μl containing 50 mM Hepes (pH 7.0), 60 mM NaCl, 60 mM KCl, bovine serum albumin (1 mg/ml), and 5 mM EGTA. Reactions proceeded at 30°C for the times indicated and terminated by addition of 200 μM sodium orthovanadate. A kinase assay to determine p44^{MAPK} activity was then performed (15) with PHAS-I as substrate.
- 27. We thank D. Bohmann for His-ubiquitin expression plasmid, all members of the Pouysségur laboratory for their support, and K. Marcu for financial assistance. Supported by the CNRS, the Institut National de la Sante et de la Recherche Medicale, the Association pour la Recherche contre le Cancer, and NIH grant GM26339 awarded to K. Marcu. B.J.M. was supported by the Ligue Nationale contre le Cancer.

19 May 1999; accepted 22 November 1999

Bacteriophytochromes: Phytochrome-Like Photoreceptors from Nonphotosynthetic Eubacteria

Seth J. Davis,¹ Alexander V. Vener,² Richard D. Vierstra^{1,2*}

Phytochromes are a family of photoreceptors used by green plants to entrain their development to the light environment. The distribution of these chromoproteins has been expanded beyond photoautotrophs with the discovery of phytochrome-like proteins in the nonphotosynthetic eubacteria *Deinococcus radiodurans* and *Pseudomonas aeruginosa*. Like plant phytochromes, the *D. radiodurans* receptor covalently binds linear tetrapyrroles autocatalytically to generate a photochromic holoprotein. However, the attachment site is distinct, using a histidine to potentially form a Schiff base linkage. Sequence homology and mutational analysis suggest that *D. radiodurans* bacteriophytochrome functions as a light-regulated histidine kinase, which helps protect the bacterium from visible light.

The phytochrome family of dimeric photoreceptors regulates growth and development by sensing ambient light through the photointerconversion between an inactive red-light (R)– absorbing form and an active far-red-light (FR)–absorbing form (1). Although previously thought to be restricted to higher plants, the recent detection of phytochrome-like proteins

in lower plants, algae, cyanobacteria, and purple bacteria suggests that all photosynthetic organisms contain phytochrome (2-4). The mechanism of action of the higher-plant phytochromes is still unclear, but recent studies suggest that they act as light-regulated protein kinases (5). This possibility has been strongly supported by sequence comparisons of the phytochrome-like proteins RcaE and Cph1 from the cyanobacteria Fremvella diplosiphon and Synechocystis sp. 6803, respectively (4, 6, 7), and Ppr from the purple bacterium Rhodospirillum centenum (3). These proteins contain a domain homologous to the chromophorebinding pocket of higher-plant phytochromes attached to a domain common among twocomponent histidine kinases (8). Based on the view that a photosynthetic bacterium is the progenitor of plant chloroplasts, it has been speculated that these prokaryotic genes represent the evolutionary origins of plant phytochromes (2, 3).

Here, we show that phytochrome-like receptors are also present within several nonphotosynthetic organisms, with the discovery of related sequences in the heterotrophic eubacteria *Deinococcus radiodurans* and *Pseudomonas aeruginosa*. These genes, designated *BphP* for bacteriophytochrome photoreceptor, were dis-

*To whom correspondence should be addressed. Email: vierstra@facstaff.wisc.edu

Fig. 1. Relations among phytochromes and phytochrome-like proteins. (A) Amino acid sequence alignments of domains conserved among the phytochrome-like proteins of DrBphP, PaBphP, Synechocystis Cph1 (Gen-Bank accession number AB001339), R. centenum Ppr (GenBank accession number AF064527), F. diplosiphon RcaE (Gen-Bank accession number U59741), and the plant phytochrome Arabidopsis thaliana phyB (Gen-Bank accession number X17342) (9). Boxes H, N, D/F, and G identify catalytic motifs that are common among twocomponent histidine kinases (8); the star identifies the conserved histidine residue essential

covered by scanning genomic databases for coding regions similar to those of phytochromes (9). The encoded D. radiodurans BphP (DrBphP) and P. aeruginosa BphP (PaBphP) proteins are 755 and 728 amino acids, respectively, with an overall amino acid sequence identity of 37% and a similarity of 48% to each other (10). Their NH_{2} -terminal ~500 amino acids are similar to the chromophore-binding region of Cph1, RcaE, Ppr, and plant phytochromes (Fig. 1, A and B). One important distinction is that both BphPs, like Ppr and possibly RcaE, do not contain the positionally conserved cysteine that is considered essential for autocatalytically linking the linear tetrapyrrole chromophore through a thioether bond (1, 11). Like the photosyntheticbacteria sequences, the COOH-terminal ~ 250 amino acids of DrBphP and PaBphP are related to histidine kinase domains present in environmental sensors that function as two-component regulators (8) (Fig. 1, A and B). This region contains the four conserved motifs that compose the catalytic center, including a positionally conserved histidine that serves as the phosphorylation site (Fig. 1A).

Given the NH₂-terminal sequence homology, we predicted that these BphPs would associate with linear tetrapyrroles to generate R/FR photoreversible chromoproteins. Despite the absence of the conserved cysteine, recombinant *Dr*BphP apoprotein covalently bound phytochromobilin (P Φ B) or phycocyanobilin (PCB) in vitro, as demonstrated by zinc-induced autofluorescence of the complex following SDS-polyacrylamide gel electrophoresis (PAGE) (Fig. 2A). In fact, the fluorescence intensity of these adducts rivaled that from a similar amount of oat phytochrome A (phyA) assembled in planta (12) (Fig. 2A), implying that DrBphP binds chromophore as efficiently as plant phytochromes. Analysis of the PCB-DrBphP holoprotein by electrospray-ionization mass spectrometry (MS) following reversed-phase liquid chromatography (LC) showed that it, like plant phytochromes, bound only one chromophore per polypeptide (13). The assembled PCB-DrBphP complex had a mass ~580 daltons greater than that of the apoprotein, a mass difference equal to that of a single PCB chromophore (586 daltons) (Fig. 3, A and B).

Once assembled with either P Φ B or PCB, the *Dr*BphP holoprotein became photochromic, capable of repeated photointerconversions between a R- and a FR-absorbing form (12) (Fig. 2B). The absorbance-difference spectrum of the holoprotein resembled that of Cph1 (4, 6) and plant phytochromes (1, 11), but with a slight blue shift for the FR maximum [698 nm for *Dr*BphP versus 709 nm for plant phytochrome (11) assembled with PCB] (Fig. 2B). A sizable photoreversible difference between 500 and 590 nm (Fig. 2B) was apparent, suggesting that the FR-absorbing form of *Dr*BphP holoprotein also absorbs green light.

The ability of DrBphP to covalently attach chromophore despite the absence of a cysteine residue at position 259 suggested that DrBphP (and likely PaBphP as well) binds chromophore by a different linkage. To test whether Met²⁵⁹ binds chromophore, using its sulfonyl moiety,

for phosphate donation. Solid and open triangles identify the positionally conserved His²⁶⁰ and Cys²⁵⁹ that serve as a chromophore-binding site in *Dr*BphP and in higher-plant phytochromes, respectively. The open diamond locates a second conserved cysteine in *Dr*BphP (Cys²⁸⁹) that is important for spectral integrity but not essential for chromophore attachment. Numbering

of the amino acids is based on *Dr*BphP. Reverse type and gray boxes denote identical and similar amino acids, respectively. **(B)** DOTPLOT illustrating three conserved regions in *Dr*BphP as compared to those from *Synechocystis* Cph1. I, an NH₂-terminal domain of unknown function; II, the chromophore-binding pocket; and III, the histidine kinase motif.

¹Laboratory of Genetics, ²Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin–Madison, 1575 Linden Drive, Madison, WI 53706, USA.

we substituted this residue with alanine, which would block a thioether linkage (1, 11), or with cysteine, the consensus ligation site (1), and examined whether these mutant proteins could bind chromophore (14). The Met²⁵⁹ \rightarrow Ala²⁵⁹ (M259A) and the Met²⁵⁹ \rightarrow Cys²⁵⁹ (M259C) mutants covalently bound PCB to generate R/FR photoreversible chromoproteins, eliminating Met²⁵⁹ as the ligation site (Fig. 2, C and D). However, the difference spectra obtained with these mutants were altered from that of wildtype DrBphP, indicating that Met²⁵⁹ is necessary for chromoprotein integrity. Another potential chromophore-binding site was Cys²⁸⁹, the only other cysteine conserved in the NH2-terminal region of most phytochrome and phytochrome-like sequences (Fig. 1A). The $Cys^{289} \rightarrow$ Ala²⁸⁹ (C289A) mutant (14) also bound PCB covalently to generate a photoreversible chromoprotein but had aberrant spectral properties (Fig. 2, C and D). Collectively, these results show that DrBphP does not use the typical thioether linkage to bind linear tetrapyrroles.

To locate the chromophore-binding site, we subjected the PCB-DrBphP holoprotein to chemical digestion with cyanogen bromide (CNBr) (13) and analyzed the resulting fragments by LC/MS. Several molecules with absorbance at 374 nm were resolved by LC (Fig. 3C). Subsequent MS analysis identified these compounds as free PCB, several contaminants, and a single PCB-bound peptide (10). The chromopeptide was a singly charged ion with a mass-to-charge ratio (m/z) of 805.6 (Fig. 3D), consistent with the expected mass of a CNBr product. PCB-histidyl homoserine lactone, formed from the release of a His-Met chromodipeptide from the holoprotein. Its mass predicted that PCB was bound to histidine through a Schiff base linkage by a dehydration reaction; this linkage would produce an unprotonated ion with a positive charge at the quaternary amine and a calculated m/z of 805.5. The Met-His-Met sequence required to generate such a CNBr product appears only once in DrBphP (residues 259 through 261), locating His²⁶⁰ as the ligation site.

To confirm that His²⁶⁰ is the bilin linkage site, we substituted it with alanine (14) and tested whether this mutant protein could bind PCB. Compared to wild-type DrBphP, the chromophore-binding activity of the His²⁶⁰ \rightarrow Ala²⁶⁰ (H260A) mutant was reduced at least 100-fold (Fig. 3E). His²⁶⁰ is positionally conserved in all phytochromes and phytochromelike proteins (Fig. 1A) and appears to be important for chromophore attachment in plant phytochromes (11). For other phytochrome-like proteins that do not contain the adjacent cysteine (PaBphP, Ppr, and RcaE), this histidine residue may serve as the ligation site. For those that have the adjacent cysteine (higher-plant phytochromes and Cph1), this histidine could form a transient Schiff base intermediate with

Fig. 2. In vitro assembly and spectral properties of wild-type and mutated versions of DrBphP assembled with $P\Phi B$ or PCB. (A and C) The reaction products subjected to SDS-PAGE and stained with Coomassie brilliant blue or analyzed for zinc-induced fluorescence of the bilin chromophore. Oat phyA represents phytochrome assembled in planta and purified from etiolated seedlings (12), and Apo represents Dr BphP without chromophore addition. (B and D) Difference spectroscopy of the reaction products following saturating R and FR light. Difference maxima and minima are indicated. All holoproteins in (D) were assembled with PCB.

Immediately downstream of BphP in an operon within the *D. radiodurans* genome is a coding region for a 126-amino acid protein with substantial homology to response regulators (8) (designated BphR for bacteriophytochrome regulator). Its closest sequence rel-

ative (62% similar over the entire length of the polypeptide) is *Synechocystis* Rcp1, the proposed phosphate acceptor of activated Cph1 (δ). Given its linkage to *Dr*BphP and the homology to Rcp1, we predict that *D. radiodurans* BphR (*Dr*BphR) functions as a phosphate acceptor for the light-activated histidine kinase activity of *Dr*BphP, which in turn initiates its associated light-signaling pathway.

Fig. 3. Characterization of the *Dr*BphP holoprotein assembled with PCB. Molecular-mass determination of (**A**) Holo-*Dr*BphP and (**B**) Apo-*Dr*BphP by LC/MS. The masses indicated with arrowheads were calculated from multiple ion species of the corresponding proteins. (**C**) The LC absorption profile at 374 nm of the *Dr*BphP-PCB holoprotein after cleavage with CNBr. The peaks containing the chromopeptide and free PCB released from the peptide during CNBr treatment are indicated. The peaks under the square bracket are contaminants present in the PCB preparation used to assemble Holo-*Dr*BphP (10). Covalent binding of PCB to *Dr*BphP was selective and specific, because there was no apparent binding of other ultraviolet-absorbing contaminants (10). (**D**) The MS spectrum showing the chromopeptide ion (arrowhead) identified it as a PCB-histidyl-homoserine lactone predicted to be released from the shown amino acid sequence (S, Ser; P, Pro; M, Met; H, His; Q, Cln; Y, Tyr; and L, Leu). (**E**) Mutation of His²⁶⁰ blocks chromophore attachment. Wild-type (WT) and H260A versions of the *Dr*BphP apoprotein were incubated with PCB and analyzed as in Fig. 2.

www.sciencemag.org SCIENCE VOL 286 24 DECEMBER 1999

Fig. 4. Role of BphP and BphR in *D. radiodurans* carotenoid accumulation and growth. (**A**) Deinoxanthin accumulation in wild-type, $\Delta bphP\Delta bphR$, $\Delta bphP$, or $\Delta bphR$ strains of *D. radiodurans* kept in the dark or subjected to various fluences of continuous white light for 4 days. Deinoxanthin content was expressed in relation to total protein. The data represent the mean of four experiments (error bars indicate \pm SD). (**B**) Growth of individual colonies of wild-type and $\Delta bphP$ strains in the dark or in ~350 µmol m⁻² s⁻¹ of white light. After 4 days, the area (error bars indicate \pm SD) of ~50 representative colonies was measured.

Because phytochromes and phytochromelike proteins regulate pigmentation (3, 7, 15), it was likely that the BphP/BphR system also regulates pigment synthesis in D. radiodurans, the most abundant of which is the carotenoid deinoxanthin (16). To examine this, we generated null mutations in the BphP/BphR operon by homologous-gene replacement and examined the photoresponses of the cultures (17). Wild-type bacteria accumulated higher amounts of deinoxanthin when grown under increasing fluence rates of white light. However, this induction was severely repressed in all three mutant strains, $\Delta bphP\Delta bphR$, $\Delta bphP$, and $\Delta bphR$ (Fig. 4A). Red light increased pigmentation in wild-type cells, but far-red light had no observable effect in comparison to darkness (10), implying that the Pfr form was the biologically active conformation. The light-induced accumulation of carotenoid appears to help protect D. radiodurans from intense visible light. Whereas the wild type and the $\Delta bphP$ mutant grew at similar rates in the dark, colony growth of $\Delta bphP$ was markedly reduced when grown under intense light (Fig. 4B).

The presence of phytochrome-related proteins in *D. radiodurans* and *P. aeruginosa* expands the known types of signaling used by heterotrophic bacteria to respond to changing light. Although *PaBphP* was not directly tested here, we presume that its photochemical properties and mechanism of action are similar to that of *DrBphP*, given their extensive sequence homology within both the chromophore-binding pocket and the histidine kinase domain (Fig. 1A). The *DrBphP* photoreceptor is similar but photochemically distinct from plant phytochromes, having blue-shifted absorbance spectra and using a different linkage to bind chromophore, which involves a histidine rather than a cysteine to potentially form a Schiff basetype bond. The identity of the natural *Dr*BphP chromophore is unknown, but its similarity to PCB is likely.

Given that D. radiodurans and P. aeruginosa are distantly related to each other and to photosynthetic bacteria (10), these BphPs broaden our current view of phytochrome evolution. Because the other nonphotosynthetic bacteria whose genome sequences are available do not contain phytochrome-related genes (10), bacteriophytochromes are not universally distributed, thus raising the question as to how these eubacteria evolved or obtained this receptor. One possibility for D. radiodurans is horizontal gene transfer, likely from a cvanobacterium. Consistent with this possibility is that numerous D. radiodurans genes have a substantial sequence similarity to those within cyanobacteria (18). Whatever its origin, the D. radiodurans BphP pathway should provide a useful paradigm for studying the mechanism or mechanisms of phytochrome action because it offers for the first time a simplified phytochrome-like response in an organism that is naturally devoid of photosynthesis. In this case, the signal transduction chain could involve as few as three components: DrBphP, DrBphR, and the target genes that regulate deinoxanthin biosynthesis.

References and Notes

- P. H. Quail *et al.*, *Science* **268**, 675 (1995); R. E. Kendrick and G. H. M. Kronenberg, *Photomorphogenesis in Plants* (Kluwer, Dordrecht, Netherlands, ed. 2, 1994).
- H. A. W. Schneider-Poetsch, Ü. Kolukisaoglu, D. H. Clapham, J. Hughes, T. Lamparter, *Physiol. Plant.* 102, 612 (1998).
- 3. Z.-Y. Jiang et al., Science 285, 406 (1999).
- J. Hughes et al., Nature 386, 663 (1997); T. Lamparter et al., Proc. Natl. Acad. Sci. U.S.A. 93, 11792 (1997).
- 5. K.-C. Yeh and J. C. Lagarias, Proc. Natl. Acad. Sci.

U.S.A. **95**, 13976 (1998); C. Fankhauser *et al.*, *Science* **284**, 1539 (1999).

- K.-C. Yeh, S.-H. Wu, J. T. Murphy, J. C. Lagarias, Science 277, 1505 (1997).
- D. M. Kehoe and A. R. Grossman, Science 273, 1409 (1996).
- J. A. Hoch and T. J. Silhavy, Two-Component Signal Transduction (American Society for Microbiology Press, Washington, DC, 1995).
- BLAST searches were performed with the database available at http://www.ncbi.nlm.nih.gov/BLAST/ unfinishedgenome.html. Sequence analysis was performed with GCG software (Madison, WI) and MACBOXSHADE (Institute for Animal Health, Pirbright, UK).
- S. J. Davis, A. V. Vener, R. D. Vierstra, unpublished data.
- S. H. Bhoo et al., J. Am. Chem. Soc. 119, 11717 (1997).
- 12. Oat phyA was purified as described [R. D. Vierstra and P. H. Quail, *Biochemistry* 22, 2498 (1983)]. *DrBphP* was amplified by polymerase chain reaction (PCR) from genomic DNA and ligated into pET28a⁺ (Novagen, Madison, WI) for expression in *Escherichia coli* with an NH₂-terminal polyhistidine tag, and the recombinant protein was purified by nickel-chelate chromatography (Qiagen, Valencia, CA). Holo-*DrBphP* was assembled with PCB and PΦB as described for Cph1 (4, 6). Adducts were visualized by zinc-induced fluorescence of the chromoprotein following denaturing SDS-PACE (17). Difference spectra were obtained after saturating R (660 nm) and FR (730 nm) irradiations (4).
- 13. We analyzed proteins and peptides using the API 365 LC/MS system (Perkin-Elmer, Norwalk, CT) with a C18 column (5 μm, 1.0 mm by 150 mm) (Vydac, Hesperia, CA) and a 0 to 95% water-acetonitrile gradient in 0.05% trifluoroacetic acid for LC. Peptide hydrolysis was accomplished by incubating the DrBphP holoprotein for 16 hours in the dark at ~20°C in 70% formic acid with a 200-fold molar excess of CNBr over methionine.
- Site-directed mutations were introduced by Quikchange (Stratagene, La Jolla, CA) for DrBphP (M259A) and by overlap-extension PCR for DrBphP (M259C), DrBphP (C289A), and DrBphP (H260A).
- 15. J. von Lintig *et al.*, *Plant J.* **12**, 625 (1997). 16. L. Lemee, E. Peuchant, M. Clerc, M. Brunner, H.
- L. Lemee, E. Peuchant, M. Clerc, M. Brunner, H Pfander, *Tetrahedron* 53, 919 (1997).
- 17. Deinococcus radiodurans R1 was grown at 30°C on carotenoid-free media prepared with solid complete yeast-synthetic media (Difco, Detroit, MI) supplemented with tryptone (5 g/liter) and glucose (1 g/liter). To create vectors to disrupt *DrBphP*, *DrBphR*, or both, we generated a targeting plasmid (pFSI31) by inserting the Stu I-Fsp I fragment containing the chloroamphenicol acetyltransferase gene from pI3 (19) into the Eco RV site of pBS SK⁺ (Stratagene). Sequences flanking DrBphP, DrBphR, or both were amplified by PCR from D. radiodurans DNA and introduced into pFSI31 so that, after homologous integration, the respective loci would be exactly replaced by the chloroamphenicol-resistance marker. Transformation and mutant identification was according to (19), and mutants were identified and confirmed by Southern blotting (10). Cells were irradiated with varying fluences of white light provided by a sodium lamp supplemented with fluorescent lighting. Deinoxanthin was measured spectrophotometrically following methanol extraction, as described (19).
- 18. R. S. Gupta and V. Johari, J. Mol. Evol. 46, 716 (1998).
- P. D. Gutman, P. Fuchs, L. Ouyang, K. W. Minton, J. Bacteriol. 175, 3581 (1993).
- 20. We thank K. Minton for supplying D. radiodurans R1 and the pl3 plasmid, O. White for discussions on the D. radiodurans sequence, The Institute for Genomic Research and the Pseudomonas Genome Project for distributing the genomic sequences described here, S. H. Bhoo and P.-S. Song for providing PCB and PΦB, and A. Harms for assistance with MS. We dedicate this paper to the memory of Rudy J. Wodzinski. This work was supported by an NIH predoctoral fellowship (S.J.D.) and U.S. Department of Energy grant DE-FG02-88ER-13968 (R.D.V.).

12 August 1999; accepted 29 October 1999

LINKED CITATIONS

- Page 1 of 2 -

You have printed the following article:

Bacteriophytochromes: Phytochrome-Like Photoreceptors from Nonphotosynthetic Eubacteria Seth J. Davis; Alexander V. Vener; Richard D. Vierstra *Science*, New Series, Vol. 286, No. 5449. (Dec. 24, 1999), pp. 2517-2520. Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819991224%293%3A286%3A5449%3C2517%3ABPPFNE%3E2.0.CO%3B2-6

This article references the following linked citations:

References and Notes

¹ Phytochromes: Photosensory Perception and Signal Transduction

Peter H. Quail; Margaret T. Boylan; Brian M. Parks; Timothy W. Short; Yong Xu; Doris Wagner *Science*, New Series, Vol. 268, No. 5211. (May 5, 1995), pp. 675-680. Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819950505%293%3A268%3A5211%3C675%3APPPAST%3E2.0.CO%3B2-P

³ Bacterial Photoreceptor with Similarity to Photoactive Yellow Protein and Plant Phytochromes

ZeYu Jiang; Lee R. Swem; Brenda G. Rushing; Savitha Devanathan; Gordon Tollin; Carl E. Bauer *Science*, New Series, Vol. 285, No. 5426. (Jul. 16, 1999), pp. 406-409. Stable URL:

 $\underline{http://links.jstor.org/sici?sici=0036-8075\% 2819990716\% 293\% 3A285\% 3A5426\% 3C406\% 3ABPWSTP\% 3E2.0.CO\% 3B2-N}{(3.5)}$

⁴ Characterization of Recombinant Phytochrome from the Cyanobacterium Synechocystis

Tilman Lamparter; Franz Mittmann; Wolfgang Gartner; Thomas Borner; Elmar Hartmann; Jon Hughes

Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 22. (Oct. 28, 1997), pp. 11792-11797.

Stable URL:

http://links.jstor.org/sici?sici=0027-8424%2819971028%2994%3A22%3C11792%3ACORPFT%3E2.0.CO%3B2-6

LINKED CITATIONS

- Page 2 of 2 -

⁵ Eukaryotic Phytochromes: Light-Regulated Serine / Threonine Protein Kinases with Histidine Kinase Ancestry

Kuo-Chen Yeh; J. Clark Lagarias

Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 23. (Nov. 10, 1998), pp. 13976-13981.

Stable URL:

http://links.jstor.org/sici?sici=0027-8424%2819981110%2995%3A23%3C13976%3AEPLS%2FT%3E2.0.CO%3B2-D

⁵ PKS1, a Substrate Phosphorylated by Phytochrome That Modulates Light Signaling in Arabidopsis

Christian Fankhauser; Kuo-Chen Yeh; J. Clark Lagarias; Hong Zhang; Tedd D. Elich; Joanne Chory *Science*, New Series, Vol. 284, No. 5419. (May 28, 1999), pp. 1539-1541. Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819990528%293%3A284%3A5419%3C1539%3APASPBP%3E2.0.CO%3B2-G

⁶A Cyanobacterial Phytochrome Two-Component Light Sensory System

Kuo-Chen Yeh; Shu-Hsing Wu; John T. Murphy; J. Clark Lagarias *Science*, New Series, Vol. 277, No. 5331. (Sep. 5, 1997), pp. 1505-1508. Stable URL:

 $\underline{http://links.jstor.org/sici?sici=0036-8075\% 2819970905\% 293\% 3A277\% 3A5331\% 3C1505\% 3AACPTLS\% 3E2.0.CO\% 3B2-50\% 3A277\% 3A55331\% 3A277\% 3A55331\% 3A277\% 3A55331\% 3A277\% 3A55331\% 3A277\% 3A55331\% 3A277\% 3A55331\% 3A55331\% 3A277\% 3A55331\% 3A5533\% 3A277\% 3A55331\% 3A5533\% 3A5533\% 3A5533\% 3A5533\% 3A5533\% 3A553\% 3A553\% 3A55\% 3A55\%\% 3A55\% 3A55\%\% 3A55\%\%$ 3A55\%\% 3A55\%\% 3A55\%\% 3A55\%\% 3A55\%\%\% 3A55\%\%\% 3A55\%\%

⁷ Similarity of a Chromatic Adaptation Sensor to Phytochrome and Ethylene Receptors

David M. Kehoe; Arthur R. Grossman Science, New Series, Vol. 273, No. 5280. (Sep. 6, 1996), pp. 1409-1412. Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819960906%293%3A273%3A5280%3C1409%3ASOACAS%3E2.0.CO%3B2-U