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Quantum Impurity in a Nearly 
Critical Two-Dimensional 

Antiferromagnet 
Subir Sachdev," Chiranjeeb Buragohain, Matthias Vojta 

The spin dynamics of an arbitrary localized impurity in an insulating two- 
dimensional antiferromagnet, across the host transition from a paramagnet 
wi th  a spin gap t o  a Neel state, is described. The impurity spin susceptibility 
has a Curie-like divergence at the quantum-critical coupling, but wi th  a uni- 
versal effective spin that is neither an integer nor a half-odd integer. In the Neel 
state, the transverse impurity susceptibility is a universal number divided by the 
host spin stiffness (which determines the energy cost t o  slow twists in the 
orientation of the Neel order). These and numerous other results for the 
thermodynamics, Knight shift, and magnon damping have important applica- 
tions in  experiments on Layered transition metal oxides. 

The recent growth in the study of quasi-two- 
dimensional transition metal oxide com- 
pounds (I) with a paramagnetic ground state 
and an energy gap to all excitations with a 
nonzero spin (the "spin-gap" compounds 
such as SrCu,O,, CuGeO,, and NaV,O,) has 
led to fundamental advances in our under- 
standing of low-dimensional, strongly corre- 
lated electronic systems. These systems are 
insulators and thus are not as comvlicated as 
the cuprate high-temperature superconduc- 
tors (which display a plethora of phases with 
competing magnetic, charge, and supercon- 
ducting orders); this simplicity has exposed 
the novel characteristics of the collective 
quantum spin dynamics. 

One of the most elegant probes of these 
spin-gap compounds is their response to in- 
tentional doping by nonmagnetic impurities, 
such as Zn or Li, at the location of the 
magnetic ions. Such experiments were initial- 
ly undertaken on the cuprate superconductors 
(2, 3), but their analogs in the insulating 
spin-gap compounds have proved to be a 
fruitful line of investigation (4). They have 
demonstrated a remarkable property of the 
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paramagnetic ground state of the host com- 
pound: Each nonmagnetic impurity has a net 
magnetic moment of spin % located in its 
vicinity (for the case in which the host com- 
pound has magnetic ions with spin %). The 
confinement of spin is a fundamental defin- 
ing property of the host paramagnet and is a 
key characterization of the quantum-coherent 
manner in which the host spins form a many- 
body, spin zero ground state; this confining 
property was predicted theoretically (2, 5)  for 
the paramagnetic states of a large class of 
two-dimensional antiferromagnets. 

We describe here the quantum theory of 
an arbitrary localized deformation in such 
antiferromagnets; examples of deformations 
are (i) a single nonmagnetic impurity, along 
with changes in the values of nearby ex- 
change interactions, and (ii) a change in sign 
of a localized group of exchange interactions 
from antiferromagnetic to ferromagnetic. Our 
main concern is the behavior of the impurity 
as the host antiferromagnet undergoes a bulk 
quantum phase transition from a paramagnet 
to a magnetically ordered Neel state; we 
show that the spin dynamics of any deforma- 
tion is universally determined by a single 
number-an integer or half-odd integer val- 
ued spin S. 

Apart from applications to experiments on 
materials intentionally driven across a quan- 

tum phase transition, our results also lead to 
new insights and predictions about the behav- 
ior of impurities in existing spin-gap com- 
pounds. The traditional view of the spin-gap 
paramagnet is based on strong local singlet 
formation between nearest-neighbor spins 
(Fig. 1A); the resulting picture of doping by a 
nonmagnetic impurity is that the partner spin 
of the impurity site is essentially free. To 
obtain any nontrivial dynamics, one performs 
an expansion about such a decoupled limit, 
and this yields simple localized spin behavior 
with nonuniversal details, depending on the 
specific microscopic couplings. In practice, 
however, spin-gap systems are usually well 
away from the local singlet regime, and 
strong resonance between different singlet 
pairings leads to appreciable spin correlation 
lengths: Their spin gap, A, is significantly 
smaller than J, a typical nearest-neighbor 
exchange. A systematic and controlled ap- 
proach for analyzing such a fluctuating sin- 
glet state, which we advocate here, is to find 
a quantum-critical point to a magnetically 
ordered state somewhere in parameter space 
and then to expand away from it into the 
spin-gap state. The coupling between the 
bulk and impurity excitations becomes uni- 
versal in such an expansion, and all dynam- 

Fig. 1. The coupled-ladder antiferromagnet. The A 
links are solid lines and have exchange 1; the B 
links are dashed lines and have exchange A]. The 
paramagnetic ground state for X < X, is sche- 
matically indicated in (A): The ellipses represents 
a singlet valence bond, ( 1  T J ) - I J ))I* 
between the spins on the sites. The Nkel ground 
state for X > X, appears in (B). 
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ical properties depend only on the bulk pa- nonmagnetic impurity. We will now describe 
rameters, A and a velocity c .  

For clarity, we state our main results in the 
context of a simple, explicit theoretical mod- 
el; however, they are more general and apply 
quantitatively to a broad class of experimen- 
tally realizable systems. We begin by review- 
ing the properties of the regular antiferromag- 
net described by the Hamiltonian (6, 7) 

where Si are spin-% operators on the sites of the 
coupled-ladder lattice shown in Fig. 1, with the 
A links forming two-leg ladders and the B llnks 
coupling the ladders. The ground state of H 
depends only on the dimensionless coupling A, 
and we restrict our attention to J > 0,0  5 A 5 

1. At A = 0, the ladders are decoupled, and each 
forms a spin singlet quantum paramagnet (Fig. 
1A). This paramagnetic state continues adiabat- 
ically for small nonzero X until the quanturn- 
critical coupling X = A, .= 0.3, where the spin 
gap vanishes as A - (Ap - A)", where v is a 
known exponent (7) (the symbol - indicates 
that the two quantities are asymptotically pro- 
portional). For A > Xc, the ground state has 
long-range Neel order (Fig. 1B) characterized 
by the nonzero spin stiffnesses ps, and psy, 
which determine the energy cost of twists in the 
order parameter orientation in the x and y di- 
rections [we also define ps = (ps,psy)112]. The 
low-lying excitations above the Neel state are 
spin waves that travel with velocities c, and c, 
in the x and y directions [with C;/C; = psx/p,,; 
we define c = (C,C~)'/~]. AS A approaches the 
critical value Ac from above, all the stiffnesses 
vanish as (A - A,)", whereas the velocities 
remain finite and noncritical. 

Introducing a nonmagnetic impurity in H 
by removing the spin at site i = X (Fig. 2), 
the modified Hamiltonian H, has the same 
form as H, but all links connected to site X do 
not appear in the sums in Eq. 1. The system 
can be probed by examining its total linear 
susceptibility (x) to a uniform magnetic field 
H (under which the Hamiltonian becomes 
H, - g k B  xr+X H Si, where k B  is the 
Bohr magneton and g is the gyromagnetic 
ratio of the ion). This susceptibility may be 
written as x = ( g ~ ~ ) ~ ( A x ,  + ximp) where 
A is the total area of the antiferromagnet, X, 
is the bulk response per unit area of the 
antiferromagnet without the impurity, and 
xi,, is the additional contribution due to the 

Fig. 2. The impurity Hamiltonian H, in which 
the spin and links on site i = X have been 
removed. 

the behaviors of X, and x,,, as the temper- 
ature T approaches 0  ( T  + 0) and A moves 
across Xc.  

In the quantum paramagnet, A < A,, the 
presence of the spin gap implies that the bulk 
response is exponentially small, X, = (A/ 
~ f i ~ c ~ ) e - ~ ' ~ ~ '  ( 7 ) .  The confinement of a 
magnetic moment in the vicinity of the im- 
purity site implies that there will be a Curie- 
like contribution, and so 

where S = % for the model under consider- 
ation here (8); for a general local deforma- 
tion, we consider Eq. 2 as the definition of the 
value of S, which, naturally, must be an 
integer or a half-odd integer. These expres- 
sions for X, and xlmp are exact as T + 0 for 
all 0  < X < A,. Another way of character- 
izing the confinement of the magnetic mo- 
ment near X is by looking at the time auto- 
correlation function of a spin at a site i = Y 
close to X (say, its nearest neighbor); at T = 

0, this obeys 

lim ( S  y ( ~ )  S y ( 0 ) )  = m2y # 0 ,  (3) 
7'" 

where T is imaginary time and m y  is the local 
remnant magnetic moment on site Y, which is 
usually significantly smaller than the total 
impurity moment S appearing in Eq. 2. 

Next, we turn to the behavior as T + 0 at 
the critical point A = X c  [more generally, the 
T > 0  results here will apply for h < T < 
J (p, < T < J) for A < A c  (A > LC)]. We 
expect that as the spin gap in the quantum 
paramagnet disappears, the bulk magnon ex- 
citations will proliferate and their screening 
will eventually quench the impurity moment, 
so m y  approaches 0  as A approaches Ac from 
below. We can anticipate a power-law decay 
of the spin autocorrelations (9-Il), with 

for large T ,  T = 0, and A = kc; and our 
result for the new universal exponent 7' is 
given below. Standard scaling arguments also 
imply that m y  vanishes as m y  - (A, - 

The behavior at the critical point 
therefore appears analogous to that in the 
overscreened multichannel Kondo problem 
(12, 13); in that case, the impurity spin is 
screened by a bath of conduction electrons 
carrying multiple "flavors" and also exhibits 
a power-law decay in its autocorrelation. Fur- 
thermore, in the multichannel Kondo case, 
the T dependence of ximp is given essentially 
by the Fourier transform of Eq. 4; that is, by - T-l+T' Xlmp (13). This result is a conse- 
quence of a compensation effect (14) because 
the magnetic response of the screening cloud 
of conduction electrons is negligible: The 
local Fenni levels of up and down electrons 

adjust themselves to the local magnetic field, 
and hence the susceptibility is not very dif- 
ferent from the bulk susceptibility except in 
the immediate vicinity of the impurity spin 
(15). In more technical terms, xi,, vanishes 
in the strict continuum limit, and corrections 
to scaling have to be considered, which lead 
eventually to xilnp - T- lf T '  . Our computa- 
tions show that the behavior of H, at A = 

X c  is dramatically different: The magnon ex- 
citations do not have an exact compensation 
property, and their response is nonzero al- 
ready in the scaling limit. So in a sense, the 
present problem is simpler than the over- 
screened Kondo case, and nai've scaling ar- 
guments always work, without inclusion of 
irrelevant operators. The scaling dimension 
of x is that of inverse energy (7), and so we 
have one of our central results 

at A = kc, where C ,  is a universal number 
independent of microscopic details (as are all 
the C, introduced below). We computed C, 
in the expansion in E = 3 - d, where d is the 
spatial dimension, and obtained 

The omitted higher order corrections in Eq. 6 
will, in general, depend on S .  Comparing 
with Eq. 2, we can define an effective impu- 
rity spin Seff at the quantum-critical point by 
C, = SefASeff + 1)/3; it is evident that Seff is 
a universal function of S, is neither an integer 
nor a half-odd integer, and is almost certainly 
irrational at E = 1. The leading corrections in 
the E expansion are quite large, and this is a 
feature of all the results obtained below; ac- 
curate numerical estimates require some re- 
summation scheme, but we do not discuss 
this here. For completeness, we note that at 
A = Xc, the bulk response (16) X, = 

C,(k,T)/(fi~)~, a T dependence that is also 
different from the bulk response in the over- 
screened Kondo problem. 

Finally, we describe the situation for X > 
kc. The presence of Neel order at T = 0  
implies that the response is anisotropic. Par- 
allel to the Neel order, there is a total mag- 
netic moment quantized precisely at S (8), 
and this does not vary under a small longitu- 
dinal field (there is also a staggered local 
moment in zero field, as defined by Eq. 3, 
which obeys m y  - IX - X,1~'"12). Orthog- 
onal to the Neel order, there is a linear re- 
sponse to a transverse field, x,. For the bulk 
response, we have the well-known result that 
x,, is proportional to the spin stiffness, 
xbl  = ~ ~ / ( f i c ) ~ .  In contrast, the same scal- 
ing arguments leading to Eq. 5 imply that 
xi,,,,, is inversely proportional to p,, the 
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latter being the only energy scale character- 
izing the ground state as X approaches X, 
from above; so another key result is 

In general d, this relationship is x,,,, = 
C , ( f i ~ ) ( ~ - " ) / ( "  l ) / p s l / ( "  I), and the E ex- 
pansion of C, is 

where S, = 2 / [ T ( d / 2 ) ( 4 ~ ) " / ~ ] .  py vanishes, 
and so xi,,, diverges, as X approaches Xc. 
Turning to T > 0 but very small, in d = 2 
and in the absence of any spin anisotropy, 
strong angular fluctuations cause the NCel 
order to vanish at any nonzero T. Then the 
susceptibility takes the rotationally averaged 
value ximp = S2/(31rBT) + (2/3)ximP,, 
where the first term is the contribution of the 
net moment noted earlier [this term has a 
coefficient S2 and not S(S + l ) ,  because the 
locking of the moment orientation to the 
local Neel order makes it behave classical- 
ly]. In practice, this averaged will not 
be observable as even an extremely small 
anisotropy will pin the Neel order below a 
small T > 0. Our results for x are summa- 
rized in Fig. 3. 

The next two paragraphs outline the field- 
theoretic derivation of the results above- 
details appear elsewhere (1 7). We describe 
the bulk-ordering transition by a d + 1 -di- 
mensional field theory with action S, of a 
field + a ( ~ , ~ )  ( a  = 1 .  . .3) representing the 
collinear Nee1 order parameter (7). This is 
coupled by the action S,,np to an impurity spin 
at x = 0 with orientation given by the unit 
vector nu. The partition function is S 
D$(x,T)Dn(T) exp(-S, - S,,,) with 

where ~,~,ilA~/dn, = nu, and the term propor- 
tional to A(n) is a Wess-Zumino form repre- 
senting the Beny phase of the impurity spin. 
The bulk transition in S, is driven by tuning the 
coupling r through a critical value rc, which 
therefore plays a role similar to A; the X < A, 
(A > A,) region of the lattice antiferromagnet H 
maps onto the r > vc (r < rc) region of the field 
theory S,. Quite generally, any local deforma- 

tion of the antiferromagnet is described by the 
action S, + Si,np, where S, defmed as the inte- 
ger or half-odd integer appearing in Eq. 2, is 
(roughly) the net local imbalance of spin be- 
tween the two sublattices. Changes in exchange 
constants lead to additional terms such as 
S ~T+:(x = 0 , ~ )  which are all strongly irrele- 
vant under the renormalization group (RG) 
analysis in powers of E. The r = 0, go = 0 case 
of Eqs. 9 and 10 was considered earlier by 
Sengupta (1 0) [and related models in (9, l l ) ]  in 
a nonlocal formulation in which +Jx # 0 , ~ )  
was integrated out. However, such a model has 
a pathological response to even an infmitesimal 
field H (the energy is unbounded below), and 
the quartic go coupling is essential to stabilize 
the system and to all the results obtained here. 
Further, the local formulation here facilitates 
development of the RG to all orders. 

The RG analysis of S, + Simp is carried 
out by the methods of boundary-critical phe- 
nomena (18) of a (d  + 1)-dimensional sys- 
tem with a 1-dimensional boundary at x = 0, 
which constitutes a dimensional reduction of 
d > 1 [contrast this with the case of a (d  + 
1)-dimensional system with a d-dimensional 
boundary, with a dimensional reduction of 1, 
which has been invariably (13, 19) consid- 
ered earlier, as in all the Kondo problems]. 
The irrelevance of the boundary "mass" term 
+:(x = 0 , ~ )  implies that there is only an 
ordinary transition at the position of the bulk 
critical point (20) (this has been implicit in 
our earlier discussion), and there are no ana- 
logs of the surface, special, and extraordinary 
transitions (18). The RG analysis of the bulk 

action S, is now standard textbook materi- 
al-we will not reproduce it here and will 
follow the notation of (21). We introduce 
renormalized fields + = *+,, n = 
e n , ,  and renormalized couplings by g o  = 

(F'/c)(z /z2s,+ , )g ,  yo  = ( ~ ' c ) ' ' ~ ( z , /  
-)y, where is a renormalization 
inverse length scale, $, = T(dI2 - 1)/ 
(49-rdl2), and the bulk renormalization fac- 
tors Z and Z, are specified in (21). For the 
new boundary renormalization factors, we 
obtain two loops, Z' = 1 - 2y2/e + y4/e and 
Z, = 1 + 9-r2[S(S + 1) - 1/3]gy2/(2~). These 
lead to the P function for g found in (21) 
and the new 6 function for the boundary 
coupling 

The critical fluch~ations at the boundary are 
therefore controlled by the fixed point values 
y = y*, g = g*  (both nonzero) at which 
both functions vanish, and canonical meth- 
ods then imply the exponent 

Equation 6 can now be obtained by the meth- 
ods of (22), whereas Eq. 8 follows directly 
from a renormalized perturbation theory in 
the ordered phase at T = 0. We conclude our 
technical interlude by noting that our RG 

Fig. 3. Summary of the results for the bulk and impurity susceptibilities of H,. The constants C,-, 
are universal numbers, insensitive to microscopic details such as variations in the magnitude or sign 
of the exchange constants in the vicinity of the impurity, or the presence of additional nearby 
vacancies or impurity ions with different spins. The constants C, and C, depend only on the 
integerlhalf-odd integer valued S, and we can view Eq. 2, the T + 0 limit of x,,, in the paramagnet 
(X < X,), as the experimental definition of 5. For the case in which nonmagnetic impurities are 
added in a localized region, with no modification of exchange constants, 5 is the net imbalance of 
spin between the two sublattices. The constant C, defines the effective spin at the quantum- 
critical point by C, = S,,,(S,,, + 1)/3, and S,,, is neither an integer nor a half-odd integer. 
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scheme shows directly that the only graphs 
that contribute to the renormalization of y0, 
beyond those arising from the wave-function 
renormalization Z', must include a factor of 
the bulk interaction g0; this implies that Zy = 
1 for g = 0, and shows that for the models of 
(9, 10) the one-loop exponent r\' = e is exact. 

The above methods can be extended to 
determine the behavior of other observables 
in the regimes of Fig. 3. We mention a few 
as follows. 

1) Entropy: In the paramagnetic phase 
(X < \c), there is clearly a residual entropy 
of ln(2S + 1) as T -* 0. At X .= \c, the e 
expansion shows that this is modified to 
ln(2S + 1) - S(S + l)(33e/160)1/2 + 
0(e3/2), whereas in the Neel state (X > Xc, 
the Neel order pinned by some small spin 
anisotropy) the impurity entropy vanishes as 
Td at low T. 

2) Knight shift: We restrict the discussion 
here to the intermediate quantum-critical re­
gion of Fig. 3, T > |X - Xj v . The shift in 
the nuclear magnetic resonance frequency is 
proportional to the local response in the pres­
ence of a uniform external field, x(*)- In m e 

vicinity of the impurity (for example, at site 
i = 7), xO) ~ T~1+^'/2. Well away from 
the impurity (|*| —» oo)? apart from the bulk 
response of the antiferromagnet, there are 
staggered and uniform contributions that de­
cay exponentially with |*| on a scale —he I 
(VikBT). 

3) Magnon damping: In the quantum para-
magnet (X < Xc), and at T = 0, the pure 
antiferromagnet has a pole in the dynamic spin 
structure factor ~ 1/(A - hco) at the antiferro-
magnetic ordering wavevector from the triplet 
magnon excitations. In the presence of a dilute 
concentration of impurities, np this pole will be 
broadened on an energy scale F; scaling argu­
ments and the structure of the fixed point found 
here imply the exact form (23) T ~ 
nfficfL1 ~d. We argue that this damping mech­
anism is the main ingredient in the broadening 
of the resonance peak observed recently in Zn-
doped YBa2Cu307 (24). Using the values he = 
02a eV (a is the lattice spacing), A = 40 meV, 
and ni = 0.005/a2, we obtain the estimate T = 
5 meV, which is in excellent accord with the 
observed line width of 4.25 meV (24). We have 
also studied the line shape of the magnon peak 
(17) and find that it is asymmetric at very low 
71, with a tail at high frequencies; it would be 
interesting to test this in future experiments. 

We have described the highly nontrivial, 
collective, quantum spin dynamics of a single 
impurity in a strongly correlated, low-dimen­
sional electronic system. The problem maps 
onto a new boundary quantum field theory 
(Eqs. 9 and 10) and is therefore also of intrinsic 
theoretical interest. Unlike previously studied 
quantum impurity problems, there is a compli­
cated interference between bulk and boundary 
interactions, and its proper description is the 

key to the physical results we have obtained. 
Our theoretical results for the magnon damping 
in the spin-gap phase are in good agreement 
with existing experiments (24). Studies of ma­
terials exhibiting other aspects of the regimes of 
Fig. 3 appear possible, and we hope they will be 
undertaken; spin-gap compounds can be driven 
across the transition by, say, application of hy­
drostatic pressure or by doping with other im­
purities that have the same spin as the host ion 
they replace and do not change the sign of the 
exchange constants (25). Quantum Monte 
Carlo simulations should also allow more accu­
rate determination of the universal constants CY 

and C3. 
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and kinetics of the ion transport. The Born 
equation (7) led to a qualitative understand­
ing of the ion-transfer energetics derived 
from the difference in the dielectric constants 
of the two phases. Attempts to improve this 
understanding (8, 9) have been experimental­
ly complicated by constraints of charge neu-

Ion Penetration of the 
Water-Oil Interface 

Kai Wu, Martin J. ledema, James P. Cowin* 

Ions typically pass with difficulty from water into organic phases because of 
water's superior solvation power. This inhibits such processes as ion transport 
in batteries or in lipid bilayers of cells. Ion penetration across such an interface 
was studied with unusual structural control. Hydronium ions were soft-landed 
at 1 electron volt on cold films of 3-methylpentane ("oil") on a metal substrate. 
The field produced by these ions drove them through the films when warmed. 
Coadsorption of water (0.14 to 35 bilayers) inhibited the ion penetration by 
creating a solvation energy trap. A Born solvation model successfully predicted 
the trapping energies (0 to 38 kilojoules per mole). 
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