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Collisional Breakup in a 
Quantum System of Three 

Charged Particles 
T. N. Rescigno,' M. Baertschy,' W. A. I ~ a a c s , ~  C. W. McCurdyzs3 

Since the invention of quantum mechanics, even the simplest example of the 
collisional breakup of a system of charged particles, e + H + HC + e + ep 
(where e- is an electron and H is hydrogen), has resisted solution and is now 
one of the last unsolved fundamental problems in atomic physics. A complete 
solution requires calculation of the energies and directions for a final state in 
which all three particles are moving away from each other. Even with super- 
computers, the correct mathematical description of this state has proved 
difficult to apply. A framework for solving ionization problems in many areas 
of chemistry and physics is finally provided by a mathematical transformation 
of the Schrodinger equation that makes the final state tractable, providing the 
key to a numerical solution of this problem that reveals i t s  full dynamics. 

Electron-impact ionization of atoms and mol- 
ecules is one of the most basic phenomena in 
low-energy collision physics. It is the funda- 
mental mechanism for ion formation in mass 
spectroscopy and is responsible for forming 
and sustaining low-temperature plasmas that 
are used in applications ranging from fluores- 
cent lighting to the processing of silicon 
chips. These collisions are governed by none 
of the selection rules that limit optical exci- 
tation, primarily because the incident electron 
cannot be distinguished from those of the 
target. Thus, electron impact stands as one of 
the most efficient means for exciting and 
ionizing atoms and molecules. 

It seems almost incredible that even the 
simplest example of an electron impact-initi- 
ated breakup problem, the ionization of a hy- 
drogen atom in a collision with an electron, has 
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resisted solution until now. Although the Schro- 
dinger equation has been known for more than 
70 years, there has been no framework that 
allowed its complete solution for this case. In 
contrast, the bound states of the helium atom, 
another system with only two electrons, were 
computed accurately in the 1950s. That work 
established a framework that allowed the devel- 
opment of modem quantum chemistry as a 
practical discipline. The theoretical framework 
demonshated here provides a basis for devel- 
oping practical methods to treat ionizing colli- 
sions of electrons with atoms and molecules. 

The Quantum Mechanics of Three 
Charged Bodies 
Although the analytic solution of the wave 
function for the isolated hydrogen atom 
played a pivotal role in establishing the new 
quantum theory during the early part of this 
century, no corresponding solutions exist for 
systems with three or more charged particles. 
Indeed, the nonrelativistic quantum mechan- 
ics of two-electron atoms has a long history, 
beginning with the work of Hylleraas (I) on 
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bound states in the 1930s that culminated 
with Pekeris's (2) accurate determination of 
the bound states of helium in the late 1950s. 

Scattering problems are intrinsically more 
difficult. It was not until 1961 that the sim- 
plest collision problem in a two-electron sys- 
tem, scattering of an electron by a hydrogen 
atom without energy exchange, was solved 
numerically by Schwartz (3) with Kohn's 
variational principle (4). Since then, the ef- 
fort to solve the problem of collisions in 
which energy is hansferred into excitation of 
states with quantum numbers n and 1 [e- + 
H(1s) + e- + H ( n l ) ]  has produced bench- 
mark calculations of excitation probabilities 
and angular distributions for excited bound 
states of the hydrogen atom. In the case in 
which only probabilities for excitation of the 
target atom are required, the traditional ap- 
proach has been to expand the unknown so- 
lution of the Schrodinger equation in terms of 
the known wave functions of the target-the 
so-called "close-coupling" method. The ini- 
tial applications of this method were confined 
to low energies at which only a few target 
states could be excited (5) .  

The next major hurdle to overcome was 
the extension of such studies to collision 
energies above that needed to ionize the tar- 
get where a continuously infinite number of 
final states is possible. The convergence of 
the close-coupling method was convincingly 
and dramatically illustrated by Bray and Stel- 
bovics (6) in 1993, who showed that a "con- 
vergent" close-coupling method could be de- 
veloped for calculating elastic and excitation 
probabilities. They replaced the true ionized 
states of the hydrogen atom with a finite set 
of "pseudostates" and systematically in- 
creased their number until convergence was 
achieved. Using these ideas, they performed 
the first accurate computations of the total 
probability for ionization. Their work com- 
pleted another chapter on the dynamics of 
two-electron systems, but not the final chap- 
ter. Attempts to use this approach to predict 
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any of the details of the process, such as the 
angular distributions for the two outgoing 

Quantum Scattering Wave Functions tered wave function, W,,(r,,r,), plus the 
known initial state, Bo(r,,r2), allows us to In collision problems, in contrast to bound 

electrons or their respective energies, gave 
results that oscillate widelv about the correct 

state problems, the wave functions are not 
localized but extend over all svace. Collisions 

rewrite the Schrodinger equation as 

values (7) or require multiplication by un- 
foreseeable overall constants to be compara- 
ble to experiment (8). 

Although the first serious calculations on 

are intrinsically time-dependent, but the in- 
teractions depend only on distances and not 
explicitly on time, so the scattering infosma- 
tion can be found by solving the time-inde- 
pendent Schrodinger equation familiar to 
both chemists and physicists: 

- 
ionization by electron impact did not appear 
until the early 1990s, Peterkop (9) and simul- 
taneously Rudge and Seaton (10) had worked 
out the mathematical theory of ionization in 
the early 1960s. The form of the wave func- 
tion in which all three particles are widely 
separated places a boundary condition on the 
wave function that is so intractable that no 
known numerical approach to solving the 

The electron coordinates are measured from 
the nucleus, and a0 describes the initial state 
of the system, namely, a free electron with 
momentum k, incident on a hydrogen atom in 
its ground state, cp,,. The ? sign determines 
the symmetry of the wave function under 
interchange of the coordinates r ,  and r,, 
which is a consequence of the quantum me- 
chanical indistinguishability of the electsons. 
The plus and minus signs depend on the total 
spin S of the two electrons: plus for singlets 
(S = 0) and minus for triplets (S = 1). The 
key aspect of Eq. 2 is that the scattered part of 

where H i s  the Hamiltonian operator, T is the 
wave function, and E is total energy of the 
colliding system. When only one electron can 
escape to large distances from the nucleus, 
the form of the final state wave function is a 
product of a bound orbital for one electron 
(such as the 1s orbital of hydrogen) and a 
free wave [or more properly, an outgoing 
spherical wave, exp(ikr)lr, where i = 
g\/-I, k is the momentum of the electron, 
and r is its distance from the nucleus] for 

Schrodinger equation has successfully incor- 
porated it explicitly. The mathematical theory 
has given rise to a number of "ansatz" stud- 
ies-a large number have appeared in recent 
years following the pioneering work of 
Brauner et al. (11) in 1989-in which aspects 
of the final state wave function for three 
charged particles are incorporated into an ad 

the other. This is the boundary condition 
under which the Schrodinger equation is to 

the wave function, W,,(r,,r,), contains only 
outgoing waves at large distances and carries 

hoc fosmula for the ionization probability. A 
recent review of these calculations (12) has 

be solved, and the wave function can be 
easily analyzed by matching to this known 

all of the information about the scattering 
dynamics. 

concluded that they perform poorly and that, 
in the few cases in which they appear to work 

asymptotic form to give excitation proba- 
bilities and angular distributions. 

The transformation we apply to the Schro- 
dinger equation is called exterior complex 

well, the agreement with experiment is large- 
ly fortuitous. There is another promising ap- 

For breakup collisions, the asymptotic 
form of the wave function is not so simple, 

scaling, under which a real scalar distance, v, 
is transformed as 

proach that involves casting the problem in a 
time-dependent formulation (13), but it has 
not yet been applied to calculate the detailed 
ionization probabilities for the full problem 
of electron-impact ionization of hydrogen. 

Only recently has the application of very 
large scale computing begun to yield results 
on this problem, unleashing a flurry of activ- 
ity as the community began to see that a 
practical solution might be possible. Never- 
theless, the complete breakup of a system of 
three charged particles has remained an un- 
solved problem until now. We found that an 
unambiguous numerical solution of this prob- 
lem requires not only the kind of massively 
parallel computational resources that have 
only recently become available but also a 
fundamentally different approach to fosmu- 
lating the problem. This research article pre- 
sents numerical results of calculations on 
electron-impact ionization of hydrogen by a 

and when the particles are charged, the situ- 
ation is more comvlicated still. Two electrons 
can be at large distances from the nucleus, 
and one might expect the corresponding as- 
ymptotic fosm to be the product of the wave 
functions of two free electrons. However, 
because all three particles in this problem are 
charged, the Coulomb potentials between 
them fall off only as llr, the reciprocal of the 
distances between them, which complicates 
the explicit form of the wave function in the 
breakup region. The asymptotic form for 
breakup is sufficiently complicated that 
knowing it has yet to provide a viable path to 
a first-principles calculation of the complete 
wave function. 

We have devised a method that avoids this 
problem completely (14, 15). We divided the 
problem into two steps: (i) computing the full 
wave function without explicit reference to 
any asymptotic form and (ii) extracting the 

where R, is a large real number and is a 
positive number between 0 and a. This trans- 
formation is applied to the radial coordinates 
of both electrons. Exterior complex scaling of 
coordinates was invented by Simon (16) in 
1979 to prove formal mathematical theorems 
in scattering theory (1 7). The crucial aspect 
of this transformation is that the scattered 
wave tends to zero exponentially at large 
distances because it is purely outgoing. Al- 
though a solution of the original Schrodinger 
equation in the breakup region would require 
the imposition of the complicated three-body 
asymptotic boundary condition, the tsans- 
formed Schrodinger equation can be solved 
for the scattered wave by imposing the 
boundary condition that it vanish as either 
electron coordinate goes to infinity, exactly 

method that can give complete details about 
the energy and angular distributions of the 

required dynamical information from the 
computed wave function, again without ex- 

as though it were a bound state. 
A pictorial representation of the exterior 

two outgoing electrons. The first calculations 
on the bound states of helium or on electron- 

plicit reference to an asymptotic form. scaling transformation and its application in 
two dimensions is shown in Fig. 1. In the 

Computing the Wave Function for the 
Breakup Problem 

impact excitation of the hydrogen atom 
opened the door to today's calculations on 

unshaded portion of the diagram, the electron 
coordinates r ,  and r, are both real. Thus, in 

large molecules rich with previously un- 
known physical effects. Similarly, the com- 
plete calculations of electron-impact ioniza- 
tion of the hydrogen atom point the way to 
calculations on larger atoms and molecules 

To compute the wave function, we use a 
mathematical transformation of the Schrod- 

this restricted region, the wave function we 
compute under the exterior scaling transfor- 
mation coincides with the physical wave 
function for the system; that is, it is identical 
to the one that would be obtained by applying 
the correct Coulomb asymptotic boundary 
conditions for breakup. 

inger equation itself that makes the wave 
function approach zero as the coordinates of 
any electron, ri, become large, just as it 
would in a bound state. Expressing the wave 
fimction as the sum of two terns, the scat- 

that will unravel the more complicated dy- 
namics of those ionizing collisions. 
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r2 complex (rl, r2) complex 

Ro 

r2 rl complex 

Fig. 1. The exterior complex scaling transfor- 
mation. This mapping is applied to the radial 
coordinates of each electron. (Top) Real (Re) 
and imaginary (Im) parts of one radial coordi- 
nate plotted in the complex plane. The coordi- 
nate is real from 0 to R,; beyond R,, it is rotated 
into the upper half plane by an angle q. (Bot- 
tom) The scaling of a two-dimensional coordi- 
nate system. Both coordinates are real on an 
interior box extending from 0 to R,. Outside of 
this box, at least one of the coordinates is 
complex. The hyperspherical coordinates p and 
a, which are used for calculating ionization flux, 
are also shown. 

The Schrijdinger equation for this prob- 
lem is an equation in six variables. The next 
step to solving it is to expand the wave 
function in terms of functions of the angular 
coordinates of the electrons: 

The functions 9&,, so-called coupled spher- 
ical harmonics (18), are eigenfunctions of the 
total angular momentum, L, and the angular 
momenta of the individual electrons, I ,  and 
I,. The use of the expansion given by Eq. 4 in 
the equation for the scattered wave results in 
sets of coupled two-dimensional second-or- 
der differential equations for the radial com- 
ponents of the wave function, $~h(rl,r2). Be- 
cause the total angular momentum is con- 
served, there is only coupling between com- 
ponents that have the same value of L. 

We solve the resulting equations by con- 
verting them into large systems of complex 
linear equations using a finite difference rep- 
resentation of the Hamiltonian operator on a 
two-dimensional numerical grid. The grids 
used here, whose real portion extends out to 
130 Bohr radii, consist of -250,000 total 
points. The systems of complex linear equa- 

tions that we solve are on the order of 5 
million by 5 million. Such calculations re- 
quire special techniques and are only practi- 
cal to carry out on massively parallel super- 
computers. 

We can get a striking visualization of the 
scattering process by looking at the radial 
components of the scattered wave function. 
Three different radial components for L = 2 
at an incident energy of 17.6 electron volts 
(eV) are shown in Fig. 2. The singlet com- 
ponent with I, = 1, = 1 (Fig. 2A) is the 
easiest to explain. It is symmetric under in- 
terchange of r ,  and r,. The large-amplitude 
oscillations along the r,  and r2 axes are due to 
discrete excitation processes in which one 
electron is confined to a region near the 
nucleus. The circular wavefronts that span 
the space between the two axes are due to 
ionization in which both electrons are moving 
away from the nucleus, and they exhibit the 
wavelength corresponding to the total energy 
available to the two outgoing electrons. The 
triplet component with I ,  = I ,  = 1 is shown 
in Fig. 2B. In contrast to the singlet compo- 
nent, this radial function is antisymmetric 
under the interchange of radial coordinates so 
the ionization wave is zero along the line 
r, = r,. A component with I ,  = 2 and I,  = 0 
is shown in Fig. 2C. This component itself is 
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asymmetric, but there is also a complementary 
component with I, = 0 and I, = 2 that pre- 
serves the overall symmetry of the full wave 
function. The large-amplitude, short-wave- 
length oscillations along the r, axis are due to 
elastic scattering. Longer wavelength processes 
that correspond to various excitations of the 
hydrogen atom are also present and cause the 
"beat" pattern in the amplitude near the u, axis. 
All of the radial components combine with the 
known angular factors to form the complete 
scattered wave through Eq. 4. Once the wave 
function is computed, we have information 
about all the physical processes that occur in 
this collision, but we must devise a way of 
extracting that information without recourse to 
the three-body asymptotic form. 

Analyzing the Scattered Wave to 
Obtain Probabilities 
Exterior complex scaling gives us a method 
for computing the physically correct wave 
function over a finite region of space where 
both u, and u2 are real. The next task is to 
devise a method for analyzing this wave 
function to get probabilities and angular dis- 
tributions for ionization. We do this by com- 
puting the quantum mechanical flux. The 
quantum mechanical flux is a concept dating 
from the 1920s on which formal scattering 
theory and the concept of scattering cross 
sections are based (19). For a two-electron 
system, the flux (or probability current den- 
sity) is a six-dimensional vector defined as 

process is the ratio of particles scattered per unit 
time to the flux (particles per unit time per unit 

u, and u2 by a hyperradius p = (u: + u;)li2 
and an angle a = tan-'(r,iu2) (see Fig. 1). As 
the electrons get very far apart, the angle a 
also parameterizes the energy sharing be- 
tween the two electrons as E, = E cos2a and 
E, = E sin2a. We can then label the outgoing 
flux at any point by F(p, a ,  0,, cp,, 0,, 9,). In 
the limit p + m, this flux is directly propor- 
tional to the probability of ionization with 
electrons ejected with energies E,  and E, and 
directions specified by the respective angles 
0,, cp,, 02, and 9,. 

The wave hnction computed under exterior 
complex scaling is physically meaningful only 
in the region where both coordinates are real. 
Therefore, we must evaluate the flux through a 
hypersphere whose radius p lies within the un- 
shaded portion of the grid shown in the lower 
portion of Fig. 1. It can be shown that, for 
electron-impact ionization, the probability com- 
puted in this fashion approaches its asymptotic 
limit as lip. We obtain the p + x limit of the 
flux by extrapolating calculations performed for 
several sizes of the real part of the grid, R,. We 
found that the flux reaches its asymptotic value 
quite smoothly for values of a that are not close 
to 0 or ~ 1 2 .  For the calculations reported here, 
the largest value of R, considered was 130 Bohr 
radii. 

The Ionization Probabilities and Cross 
Sections 
In scattering experiments, the probabilities for 
quantum events are usually expressed as a cross 
section with units of area, which for a particular 

where the asterisk denotes complex conjuga- 
tion. The flux corresponding to ionization is 
evident in the outgoing waves seen in the 
radial functions plotted in Fig. 2. We want to 
describe the outgoing flux in a convenient 
coordinate system, hyperspherical coordi- 
nates, which replaces the two radial distances 

"0 2 4  6 8 1 0  
energy of one electron (eV) 

Fig. 3. Single differential ionization cross sec- 
tion (SDCS) for electron-hydrogen collisions at 
25-eV incident energy. The ionization potential 
of hydrogen is 13.6 eV, so the total energy 
available to  the ionized electrons is E = 11.4 
eV. The calculated SDCS is symmetric about 
El2 = 5.7 eV as expected. Experimental data 
from Shyn (20) are shown for comparison. 

area) of incident particles. For ionization, a 
number of different cross sections are frequent- 
ly measured. The total cross section for ioniza- 
tion measures the total ionization probability at 
a given collision energy, irrespective of how the 
available energy is shared between the two free 
electrons that reach the detector or their direc- 
tion of ejection relative to the incident beam. 
The single differential (SDCS) or energy-shar- 
ing cross section, d n i d ~ ,  measures the probabil- 
ity for ionization collisions that produce elec- 
trons at specific energies, irrespective of their 
directions of ejection. Because electrons are 
identical particles, it is physically impossible to 
distinguish which electron was originally 
bound in the atom. If E, and E, denote the 
energies of the two electrons in the final state 
(energy conservation demands that E, = E - 
E,), then the SDCS must be symmetric about 
Ei2. The SDCS is important because it plays a 
large part in determining the way energy is 
distributed among ions and electrons in low- 
temperature plasmas and in determining the 
electron energy distribution fimction itself. Un- 
fortunately, experimental determination of the 
SDCS is difficult because it requires an extrap- 
olation into regions where measurements are 
not possible (20). 

The most detailed information about ioniza- 
tion is contained in the so-called triple differ- 
ential cross section (TDCS), dui(d&dCL,dCL,), 
which measures the ionization probability for 
producing electrons at specific energies and 
directions. The availability of such data places 
the most stringent test on the quality of a cal- 
culated wave function because it is sensitive to 
complex phases of its components. 

We compute the SDCS by applying the flux 
operator to our calculated wave function. Inte- 
gration over the directions of ejection of the two 
electrons, because of the orthonormality of the 
coupled spherical harmonics, collapses the 
SDCS expression into a simple sum of contri- 
butions from each radial component of the scat- 
tered wave function. Our calculated SDCS at an 
incident energy of 25 eV, along with the exper- 
imentally determined values of Shyn (20), is 
shown in Fig. 3. Other first-principles attempts 
to compute the SDCS have produced results 
that fail to display the proper symmetry about 
Ei2 (21). Our results are symmetric about Ei2, 
as they must be because they were extracted 
directly from a wave fimction with the proper 
exchange symmetry. 

For the TDCS, there is no integration over 
the directions of ejection, and thus the cross 
section contains terms that depend on interfer- 
ence between the various partial wave compo- 
nents, %,Jr,,r2), of the scattered wave fimc- 
tion. The TDCS for electron-hydrogen ioniza- 
tion has been measured by Roder et al. (22,23) 
in the "symmetric coplanar" geomeby. In this 
geometry, the electrons exit with the same en- 
ergy, and the incident electron beam and the 
outgoing electrons all lie in the same plane. A 
diagram of the geometrical arrangement for this 
situation is shown in Fig. 4A. The experimen- 
tally determined values are plotted along with 
our calculated cross section in Fig. 4, B to F. 
Roder et al. (23) state that the absolute error for 
the experiments is as large as 40% but that the 
relative error is on the order of the sizes of the 
symbols. The small asymmetry about 90" in 
Fig. 4B suggests the size of the relative error, 
whereas the error bars show the absolute error. 

Figure 4B describes the case in which the 
two detectors are placed 180" apart. The cross 
section in this case is strongly peaked at angles 
of 0" and 1 80°, where one electron is scattered 
forward and the other "recoils" in the backward 
direction. In the "symmetric coplanar" geome- 
try, there is near zero probability of both elec- 
trons being ejected perpendicular to the direc- 
tion of the incident electron. In the other cases 
depicted in Fig. 4, for which the detectors are 
separated by smaller angles, the lowest proba- 
bilities always correspond to the two electrons 
being scattered at equal but opposite angles 
from the incident direction. We verified that the 
curves shown in Fig. 4, B to E, are converged 
with respect to the number of angular momen- 
tum components included, whereas the larger 
discrepancy in Fig. 4F is due to the need for 
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more angular momentum components in our 
calculations to describe the ejection of electrons 
in closer directions. Overall, our results are in 
excellent agreement with measured values, both 
in shape and magnitude. 

Understanding Ionizing Collisions and 
Their Role in Common Phenomena 
The theoretical approach and numerical calcu- 
lations we have presented here make possible a 
complete numerical solution of the simplest 
nontrivial problem in atomic collision theory- 
electron-hydrogen atom scattering-some 40 
years after it was first attacked. The key to 

detector  

detector  

success in this work is the use of mathematical 
transformations that were originally invented as 
tools to prove formal theorems in mathematical 
physics and that avoid the explicit use of the 
asymptotic boundary condition for breakup that 
has been the barrier to such calculations for four 
decades. Although the calculations presented 
here will certainly be improved upon, their real 
importance is that the only approximations in 
the method are in the finite size of the grid that 
is used and the number of angular components 
retained in the expansion. The procedure we 
have outlined involves no uncontrolled approx- 
imations, and the effects of the numerical ap- 

0, ( deg rees )  

8, ( deg rees )  0, ( deg rees )  

O d  60 120 180 240 300 3$0 
0, ( deg rees )  0, ( deg rees )  

Fig. 4. (A) Geometrical arrangement for the equal energy-sharing, coplanar, triple differential cross 
sections (TDCSs) shown. The two  detectors are tuned t o  measure electrons with half of the total 
energy. The detectors, electron source, and interaction region all lie in the same plane. (B t o  F) 
TDCSs at equal energy sharing for 17.6-eV incident energy. The plots presented correspond t o  both 
detectors being simultaneously rotated about the interaction region with the angle 0,,  between 
them fixed. Experimental data of Roder et  al. (22, 23) are shown for comparison. The 1996 data 
(22) shown in each plot are from relative measurements and were originally given in a consistent, 
but undetermined set of units. The 1997 data (23) are from an absolute measurement but are 
available only for 0,, = 180". We compared the 1997 data with the corresponding 1996 data (B) 
t o  convert all of the 1996 values t o  an absolute scale. The statistical errors in the absolute 
measurements (23) are indicated for the leftmost and rightmost data points in (B). 

proximations can in principle be made arbitrari- 
ly small, given sufficient computing power. 
This fact distinguishes this approach from other 
theoretical methods that have been proposed to 
study ionization. Some have been found to give 
surprisingly good results, but, thus far, all have 
involved uncontrolled approximations that can- 
not be systematically eliminated. 

Because low-energy electron-impact ion- 
ization pervades a wide range of physical 
processes, it is important to be able to predict 
the details of this most basic collision phe- 
nomenon in more complicated contexts. We 
have succeeded in solving the problem of 
electron-impact ionization of hydrogen, but 
further work needs to be done to treat ioniza- 
tion of many-electron atoms and molecules. 
Phenomena can appear that are absent from 
the two-electron system we treated here. With 
multielectron targets, there is the possibility 
of quantum interference between direct ion- 
ization and ionization from metastable states 
that may lead to signatures in the angular and 
energy distributions of exiting electrons. In 
the case of molecules, the additional nuclear 
degrees of freedom open the door to a richer 
set of phenomena such as fragmentation and 
attachment. 

We expect that the ideas presented here 
will lead to further developments that will 
enable the treatment of ionizing collisions of 
electrons with more complicated atoms and 
molecules. There are several promising meth- 
ods being developed within the electron-scat- 
tering theory community, and the ultimate 
solution to theoretical treatment of electron- 
impact ionization of molecules will undoubt- 
edly draw on methods and concepts from 
several of these efforts. At a time when large- 
scale computers are generally thought to be 
necessary to investigate the "complexity" of 
the physical world in the very different sense 
of treating increasingly larger systems, it is 
noteworthy that the same computing power 
and tools are needed to answer a basic phys- 
ics question for one of the simplest systems 
imaginable in physics and chemistry. 
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Quantum Impurity in a Nearly 
Critical Two-Dimensional 

Antiferromagnet 
Subir Sachdev," Chiranjeeb Buragohain, Matthias Vojta 

The spin dynamics of an arbitrary localized impurity in an insulating two- 
dimensional antiferromagnet, across the host transition from a paramagnet 
wi th  a spin gap t o  a Neel state, is described. The impurity spin susceptibility 
has a Curie-like divergence at the quantum-critical coupling, but wi th  a uni- 
versal effective spin that is neither an integer nor a half-odd integer. In the Neel 
state, the transverse impurity susceptibility is a universal number divided by the 
host spin stiffness (which determines the energy cost t o  slow twists in the 
orientation of the Neel order). These and numerous other results for the 
thermodynamics, Knight shift, and magnon damping have important applica- 
tions in  experiments on Layered transition metal oxides. 

The recent growth in the study of quasi-two- 
dimensional transition metal oxide com- 
pounds (I) with a paramagnetic ground state 
and an energy gap to all excitations with a 
nonzero spin (the "spin-gap" compounds 
such as SrCu,O,, CuGeO,, and NaV,O,) has 
led to fundamental advances in our under- 
standing of low-dimensional, strongly corre- 
lated electronic systems. These systems are 
insulators and thus are not as comvlicated as 
the cuprate high-temperature superconduc- 
tors (which display a plethora of phases with 
competing magnetic, charge, and supercon- 
ducting orders); this simplicity has exposed 
the novel characteristics of the collective 
quantum spin dynamics. 

One of the most elegant probes of these 
spin-gap compounds is their response to in- 
tentional doping by nonmagnetic impurities, 
such as Zn or Li, at the location of the 
magnetic ions. Such experiments were initial- 
ly undertaken on the cuprate superconductors 
(2, 3), but their analogs in the insulating 
spin-gap compounds have proved to be a 
fruitful line of investigation (4). They have 
demonstrated a remarkable property of the 
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paramagnetic ground state of the host com- 
pound: Each nonmagnetic impurity has a net 
magnetic moment of spin % located in its 
vicinity (for the case in which the host com- 
pound has magnetic ions with spin %). The 
confinement of spin is a fundamental defin- 
ing property of the host paramagnet and is a 
key characterization of the quantum-coherent 
manner in which the host spins form a many- 
body, spin zero ground state; this confining 
property was predicted theoretically (2, 5)  for 
the paramagnetic states of a large class of 
two-dimensional antiferromagnets. 

We describe here the quantum theory of 
an arbitrary localized deformation in such 
antiferromagnets; examples of deformations 
are (i) a single nonmagnetic impurity, along 
with changes in the values of nearby ex- 
change interactions, and (ii) a change in sign 
of a localized group of exchange interactions 
from antiferromagnetic to ferromagnetic. Our 
main concern is the behavior of the impurity 
as the host antiferromagnet undergoes a bulk 
quantum phase transition from a paramagnet 
to a magnetically ordered Neel state; we 
show that the spin dynamics of any deforma- 
tion is universally determined by a single 
number-an integer or half-odd integer val- 
ued spin S. 

Apart from applications to experiments on 
materials intentionally driven across a quan- 

tum phase transition, our results also lead to 
new insights and predictions about the behav- 
ior of impurities in existing spin-gap com- 
pounds. The traditional view of the spin-gap 
paramagnet is based on strong local singlet 
formation between nearest-neighbor spins 
(Fig. 1A); the resulting picture of doping by a 
nonmagnetic impurity is that the partner spin 
of the impurity site is essentially free. To 
obtain any nontrivial dynamics, one performs 
an expansion about such a decoupled limit, 
and this yields simple localized spin behavior 
with nonuniversal details, depending on the 
specific microscopic couplings. In practice, 
however, spin-gap systems are usually well 
away from the local singlet regime, and 
strong resonance between different singlet 
pairings leads to appreciable spin correlation 
lengths: Their spin gap, A, is significantly 
smaller than J, a typical nearest-neighbor 
exchange. A systematic and controlled ap- 
proach for analyzing such a fluctuating sin- 
glet state, which we advocate here, is to find 
a quantum-critical point to a magnetically 
ordered state somewhere in parameter space 
and then to expand away from it into the 
spin-gap state. The coupling between the 
bulk and impurity excitations becomes uni- 
versal in such an expansion, and all dynam- 

Fig. 1. The coupled-ladder antiferromagnet. The A 
links are solid lines and have exchange 1; the B 
links are dashed lines and have exchange A]. The 
paramagnetic ground state for X < X, is sche- 
matically indicated in (A): The ellipses represents 
a singlet valence bond, ( 1  T J ) - I J ))I* 
between the spins on the sites. The Nkel ground 
state for X > X, appears in (B). 
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