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mediator of expression of Bcl-2 in vitro and 
in vivo. 

CREB appears to mediate NGF-depen- 
dent neuronal survival and expression of Bcl- 
2. We tested whether Bcl-2 would overcome 
the proapoptotic effects of inhibition of 
CREB-dependent gene expression in sympa- 
thetic neurons. We introduced the A-CREB 
expression construct into sympathetic neu- 
rons by microinjection in the presence of 
either an expression vector encoding Bcl-2 or 
an empty expression vector. Expression of 
A-CREB led to apoptotic death of sympathet- 
ic neurons that was prevented by overexpres- 
sion of Bcl-2 (Fig. 5). Taken together, our 
results support a model in which NGF pro- 
motes transcription of antiapoptotic factors, 
such as Bcl-2, and promotes sympathetic 
neuron sun~ival through a mechanism requir- 
ing CREB family transcription factors. 

Note added in proof: It was recently re- 
ported that CREB mediates sun~ival of gran- 
ulosa cells and cerebellar granule neurons 
(1 7) and that NGF regulates Bcl-2 expression 
through a p421p44 MAPK cascade in PC12 
cells (IS). 
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Resistance to antibiotics is increasing in some groups of clinically important 
pathogens. For instance, high vancomycin resistance has emerged in entero- 
cocci. Promising alternative antibiotics are the peptide antibiotics, abundant in 
host defense systems, which kill their targets by permeabilizing the plasma 
membrane. These peptides generally do not act via specific receptors and are 
active in the micromolar range. Here it is shown that vancomycin and, the 
antibacterial peptide nisin Z use the same target: the membrane-anchored cell 
wall precursor Lipid 11. Nisin combines high affinity for Lipid I1 with its pore- 
forming ability, thus causing the peptide to be highly active (in the nanomolar 
range). 

Nisin Z is a member of the 1antibiGti'c family a food presewative. Nisin is posttranslation- 
(lanthionine-containing antibiotics) and is ally modified (Fig. 1A). Characteristic fea- 
produced by certain strains of Lactococcus tures of nisin are the ring systems formed by 
lactis. Because of its nontoxicity for humans thioether bonds and the dehydrated amino 
and its high bactericidal activity, it is used as acids. Nisin shares some properties with oth- 
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er pore-forming antibacterial peptides, such 
as an overall positive charge and amphipath- 
icity. However, the high bactericidal activity 
of nisin against Gram-positive bacteria, rela- 
tive to the lower activity of the antibacterial 
peptides of animal origin (such as magainin), 
has not been accounted for in the literature. 
Elucidation of the cause of the activity dif- 
ference may lead to the development of new 
classes of antibiotics with high activities. 

The difference in bactericidal activitv be- 
tween nisin and magainin is illustrated for the 
Gram-positive bacterium Micrococcusflavus 
in Fig. 1B. The M.flavus cells were killed by 
nanomolar concentrations of nisin [minimal 
inhibitory concentration (MIC) = 3.3 nM] 
(I). In contrast, magainin (2)  was at least two 
orders of magnitude less active than nisin, 
because even at the highest peptide concen- 
tration tested (0.4 p,M) not all M. flaws cells 
were killed. 

The results of the viability assay correlate 
with the ability of the peptides to permeabil- 
ize the membrane of M.flavus cells (Fig. 1C). 
This permeabilization caused the dissipation 
of vital ion gradients such as potassium, re- 
sulting in dissipation of the proton-motive 
force and eventually cell death. Nisin efi-  
ciently permeabilizes M. flavus membranes: 
At 5 nM nisin a permeabilization effect was 
detected, whereas magainin was active only 
at 3 p,M. However, when the two peptides 
were tested with membranes composed of a 
lipid extract of M. flavus, the membrane- 
permeabilizing activity of nisin dropped 
markedly (now active in the micromolar 
range), and magainin was the more active 
peptide (Fig. ID). Similar results were ob- 
tained when potassium leakage from vesicles 
was measured (3), indicating that these large 
differences are not a reflection of the nature 
of the indicator molecule. In pure phospho- 
lipid systems both peptides form short-lived 
transmembrane pores, and it has been shown 
using synthetic phospholipids that negatively 
charged lipids play an active role in this 
process (4-7). Thus, a membrane composed 
of an isolate from a chlorofonn/methanol ex- 
tract (containing mostly lipids and hardly any 
protein), or pure synthetic phospholipids, 
may lack one or more specific molecules 
needed for high nisin activity. 

'Center of Biomembranes and Lipid Enzymology, De- 
partment of Biochemistry of Membranes, Institute for 

0 . ~ 1 . 5  nM Activity of nisin and magaidn .toward model 
...-. d .......................... 9 PM membranes composed of a lipid extract from M. 

0 ' 
0 50 100 150 200 no flavus. The peptide activity was measured by 

Time (s) monitoring the leakage of carboxyfluorescein 
addition from vesicles made from a b i d  extract of M. 

Fig. 1. Activity of nisin Z and magainin toward 
intact M. flavus cells and model membrane 
vesicles. (A) Primary structure of nisin Z. Dha, 
dehydroalanine; Dhb, dehydrobutyrine; Ala-S- 
Ala, lanthionine; Abu-S-Ala, P-methyllanthi- 

B 
onine; 5, the sulfur atom of the thioether bond. 
(B) Activity of nisin and magainin in a cell 
viability assay. Nisin (closed squares) and ma- 
gainin (open squares) were added at the spe- 
cific concentrations t o  M. flavus cells in com- 
plex growth medium (78), and viability was 
determined by measuring the absorbance at 
600 nm as described (79). (C) Activity of nisin 
and magainin toward intact M. flavus cells. The 
peptide activity was measured by monitoring 
the effect on the membrane potential with the 

Peptide concentration (pM) fluorescent membrane potentialsensitive probe 
c 3,3'-diethylthiodicarbocyanine iodide [DiS-C,(5)] 

2.5- 100 nM (20). Cells were grown until mid-log phase. har- 

D flavus by measuring the incre&e in fluorescence 
due to  dilution of the dye from self-quenching 
concentrations as described (20). The concentra- 

Y magainin 2.5 pM tion of both nisin and magainin was 2.5 FM. The 
........" , , . . . . . . . . . . . . . . m < , , g 50 arrows in (C) and (D) mark the time point of 

2.5 pM peptide addition. ' 25 nisin 
4 

0 
0 100 150 

'O~ime (s) 

? 
3 
cd 2.0. - 
a 
31.5. 
Y 
m 2 1.0. 

vested, and washed once with a buffer solution of 
- nisin 250 mM sucrose, 5 mM MgSO,, and 10 mM 

potassium phosphate (pH 7.0), then resuspended 
...... magainin in the same buffer. Cells were added to the fluo- 

rescence cuvette at an optical density at 600 nm 
of 0.075 together with DiS-C,(5) at 1 kM. (D) 

'Biomembranes, lJtrecht University* Padualaan 8o 3584 Next we examined the effect of nisin on M. permeabilize the membrane (10). If this is the 
CH Utrecht, Netherlands. 'Institute for Medical Mi- 
crobiology and Immunology, University of Bonn, Sig- flavus cells in the presence of vanwmycin (Fig. case, then the cells should become more sensi- 
mund-freud-strasse 25, D-53105 Bonn, Germany. 2). Vancomycin inhibited the membrane leak- tive to nisin upon increasing the Lipid 11 content 
3NIZ0 Food Research. Microbial Ingredients Sec- age activitv of nisin against intact cells but did of their membranes. This is true for isolated 

Fig. 2. Vancomycin blocks the activity 100. Lipid ll 

" 
tion* Post Office Box 6710 BA Netherlands. not affect ;he activity of magainin. Vancomycin cytoplasmic membranes of both M. f l a w  and 
4Molecular Genetics, Groningen Biomolecular Sci- 
ences and Biotechnology Institute, University of kills bacteria by blocking the cell wall biosyn- Escherichia coli (Fig. 3A). Fusing Lipid II- 
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mail: e.j.breukink@chem.uu.nl This suggests that Lipid I1 is used by nisin to The effect was the highest for the E. coli mem- 

of nisin against M. flavus cells. The ac- 
tivity of the peptides was monitored as 
described for Fig. 1. When present, van- 75 
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G Vancomycin 

~@emgJ!) ~ 
comycin was added 2 min before the g, 
addition of nisin or magainin. Washing 2 
the cells after treatment with vancomy- 
cin gave similar results. The arrow 
marks the time point of peptide addi- ' 
tion. Inset: Schematic structure of Lipid 
II with vancomycin bound to  the 25' 

COOH-terminal Lys-D-Ala-D-Ala se- 
quence. The structure consists of a 
membrane-incorporated undecaprenyl 
moiety to  which the amino sugar Mur- Time (s) 
NAc is attached via a pyrophosphate. 
To the MurNAc (M) a pentapeptide is 
attached, of which the composition may slightly differ within different bacterial genera. The final 
subunit of Lipid II is GlcNAc (C). Pi, phosphate. 
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Fig. 3. Increase in the Lipid II content of isolated cytoplasmic 
membranes increases their nisin sensitivity. (A) Lipid II incor- 

loo- A 

poration via vesicle fusion (solid bars, fused; open bars, con- *'--.. ......-, 
trol). Small unilamellar vesicles composed of 1,2-dioleoyl- 
sn-glycero-3-phosphoglycerol and 1,2-dioleoyl-sn-glycero-3- ' 

9 
phosphoethanolamine in an equimolar mixture with or with- m 

3 50- ..:' 
out 1 mol % purified Lipid II were fused with isolated mem- 7' brane vesicles of E. coli or M. flavus by rapidly freezing the a Or% mO 1 rn mso 1 

mixture into Liquid nitrogen and thawing on ice (21). Lipid II M N ~ V U S  E. coir 25- 
was purified from Micrococcus luteus as described (22). A 

45 B membrane potential was generated in the membranes with 
the artificial electron donorlacceptor system ascorbate- 
phenazine methosulfate (23). The activity of 30 nM nisin or Peptide concentration (pM) 
400 nM magainin was monitored using the fluorescent dye 
DiS-C,(5) as described (20). Maximum depolarization was A 

$ 1 5  

determined by addition of a mixture of valinomycin and 
carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which o 
completely dissipates the membrane potential. (B) Regenera- n - S I ~  m a g a ~ ~ - 8  75 - 
tion of the Lipid II pool in M. flavus membranes increases the U D ~ ~ p " ~ ~ ~  1 I : 1 Q CJI 
sensitivity toward nisin. The M. flavus membranes were sub- 9 
jeded t o  eight freeze-thaw cycles in the presence of 0.1 mM 2 50- 
UDP-MurNAc-pentapeptide and 0.1 mM UDP-ClcNAc (solid bars), or only 0.1 mM UDP-MurNAc- $ 
pentapeptide (gray bars), or with no addition (open bars). After freeze-thawing, the membranes 25 - 
were incubated for 1 hour at 20°C. which was essential for the enzvme reactions to  take   lace. A 
membrane potential was generated, and the activity of nisin (30 n ~ )  and magainin (400 ;M) was 
determined as described for (A). 0 

0.0001 0.001 0.01 0.1 1 

branes. One explanation for this effect lies in 
the intrinsic low Lipid I1 content of E. coli, 
which contains about 2000 molecules per cell 
(II), whereas M. flayus contains about lo5 
Lipid I1 molecules (12). 

We observed that the M. flayus membranes 
were less sensitive toward nisin (by a factor 3 to 
6) relative to the intact cells (13). This can be 
explained by a loss of part of the Lipid I1 pool 
during the isolation of the membrane vesicles, 
which is due to the high turnover rate of Lipid 
11. Because the Lipid I1 biosynthesis machinery 
is still active, this allowed us to regenerate Lipid 
I1 in the presence of biosynthetic precursors. 
Upon regeneration of the Lipid I1 pool by sup- 
plying the complete set of precursors, the sen- 
sitivity of the isolated M. flavus membranes to 
nisin increased, whereas the sensitivity for ma- 
gainin was unaffected (Fig. 3B). When only 
one of the uridine 5'diphosphate (UDPkacti- 
vated sugars was present, the vesicles did not 
become sensitive to nisin. This can be ex- 
plained from current knowledge of the Lipid I1 
biosynthesis pathway. Lipid I1 is synthesized at 
the cytosolic side of the plasma membrane. 
First, the UDP-activated amino sugar N-acetyl 
murarnic acid (MurNAc), containing a pen- 
tapeptide, is attached to the undecaprenol car- 
rier; then, Lipid I1 synthesis is completed upon 
attachment of the second UDP-activated amino 
sugar N-acetyl-~glucosarnine (GlcNAc). Lipid 
I1 is transported to the exterior side of the 
membrane and becomes available for binding 
by nisin only when the synthesis is completed. 
An additional finding was that the freeze- 
thawed membranes had to be incubated at 20°C 
for 1 hour to obtain the effect of the UDP- 
activated sugars (3). Apparently, this is one way 
to control the onset of the Lipid I1 synthesis. 
Thus, this experimental setup could be used in 
the investigation of the transport process of 

Lipid 11, an important step in the cell wall 
biosynthesis. 

These results show not only that Lipid I1 
functions in the activity of nisin, but also that 
it appears to be the sole target of nisin (Fig. 
4A). Incorporation of purified Lipid I1 in 
small amounts (one Lipid I1 molecule per 
1500 phospholipid molecules) to model 
membrane systems composed of pure lipids 
markedly increased the nisin activity, where- 
as the magainin activity remained unchanged. 
In the absence of Lipid 11, nisin induced 
leakage from this system only at concentra- 
tions above 1 pM. In the presence of Lipid 11, 
leakage was detected at 1 nM nisin, which 
suggests that nisin has high affinity for Lipid 
I1 (14). The same effects of Lipid I1 were 
present when membranes containing nega- 
tively charged lipids were used (3). Because 
the activity of nisin in these model systems is 
in the range of the activity against intact cells, 
nisin appears to use Lipid I1 as its sole target. 
Nisin is dependent on Lipid I1 concentrations 
in the range of 0.001 to 0.1 mol % (Fig. 4B). 
This suggests that the diverse sensitivities to 
nisin displayed by different bacteria are 
caused by different concentrations of Lipid I1 
in the membrane, although, in the case of 
intact cells, differences in the accessibility of 
Lipid I1 for nisin should also be considered. 

The effect of Lipid I1 in all tested systems 
was specific for nisin, which suggests a spe- 
cific interaction of Lipid I1 with one or more 
of the structural elements of nisin. Moreover, 
mutagenesis experiments with nisin showed 
that relatively subtle variations in the three 
NH,-terminal rings had strong influences on 
the bactericidal activity of these mutants as 
well as on the interaction with Lipid II- 
containing membranes. For instance, a Se9 
+ Thr (S3T) mutation (actually, changing 

Lipid II concentration (rnol%) 

Fig. 4. (A) The presence of Lipid II in model 
membrane systems markedly increases the ni- 
sin activity. The activity of nisin (squares) and 
magainin (circles) was measured by monitoring 
the Leakage of carboxyfluorescein from model 
membranes composed of 1.2-dioleoyl-sn-glyc- 
ero-3-phosphocholine in the presence (filled 
symbols) or absence (open symbols) of 0.065 
mol % purified Lipid II. (B) Nisin activity is 
dependent on the concentration of Lipid II in 
the membrane. The activity of nisin (100 nM) 
was measured as described for (A). 

the first lanthionine residue into a P-methyl 
lanthionine) made the peptide less active by 
an order of magnitude (MIC for S3T = 39 
nM, versus 3.3 nM for the wild type). Chang- 
ing the thioether bond of the third ring into a 
disulfide bond had even larger effects 
(MIC > 60 nM). These findings suggest that 
at least the NH,-terminal rings of nisin are 
involved in the interaction with Lipid I1 (15). 

The high activity of nisin (in the nanomolar 
range) compared to magainin is the result of a 
combination of high-afXnity binding to Lipid I1 
and permeabilization of the plasma membrane, 
resulting in cell death. In contrast to recent 
reports on resistance or tolerance to vancomy- 
cin (16), no resistance to nisin has been report- 
ed, despite itiprolonged use as a preservative 
for almost 50 years. This combination of factors 
makes nisin an attractive antimicrobial agent. 
The insights into its mode of action uncovered 
in this study can now be used as a blueprint for 
the development of a new class of highly effi- 
cient antibiotics. 
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