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and other lta~yotypic abnor~nalities. These man- 
ifestations, in hrn, could account for the in- 
creased frequency of cancers in BS and WS 
patients. Rbosomal RNA chain eloilgation may 
be slowed in WS cells, which nlay render RNA 
polymerase I more prone to pausing that could 
trigger the foilllation of double strand breaks in 
rDX4. Repair of such breaks by nonhomolo- 
gous end-joining could result in the accurnula- 
tion of deletions within the ge~lomic rDNA 
array and contribute to premature aging in WS 
patients. 
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Posttranscriptional Gene 
Silencing in Neurospora by a 

RecQ DNA Helicase 
Carlo Cogoni* and Giuseppe Macino 

The phenomenon of posttranscriptional gene silencing (PTCS), which occurs 
when a transgene is introduced into a cell, is poorly understood. Here, the qde-3 
gene, which is required for the activation and maintenance of gene silencing in 
the fungus Neurospora crassa, was isolated. Sequence analysis revealed that the 
qde-3 gene belongs to the RecQ DNA helicase family. The QDE3 protein may 
function in the DNA-DNA interaction between introduced transgenes or with 
an endogenous gene required for gene-silencing activation. In animals, genes 
that are homologous to RecQ protein, such as the human genes for Bloom's 
syndrome and Werner's syndrome, may also function in PTCS. 

Posttrallscliptio~lal gene silencillg as a conse- 
quence of transgene introductio~l is a broadly 
diffused phenomenon in plants and fi~ngi (I, 2). 
Introd~~ction of double-stranded RNA (dsRNA) 
induces a similar phenome~lon in aniinals (3). 
The wide occurrence of gene silencing among 
different orga~~isms indicates that these phe- 
nomena may have evolved from an ancestral 
mechanism involved in genome protection 

from invading DNA (4) and viruses (5) .  Sev- 
eral models have been proposed to explain 
PTGS on the basis of the notion that the intro- 
duced transgenes result in the production of 
abenant RNAs (aRNAs) (2) that are recognized 
as a template by host RNA-:dependent RNA 
polymerase (RdRP). The RdRP enzyme may 
synthesize antisense RNA thnt can bind to 
mRNA and fonn dsRNAs that are targets for 
sequence-specific RNA degradation (6). These 
models have received experimental support. 
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silencing in plants (8).  It is unclear why PTGS 
is activated in some transgenic lines, whereas it 
is not activated in other lines. Gene silencing 
could be triggered by DYA pairing between 
homologous transgenes or with homologous 
resident genes (9). Such pairing, \idlich could 
interfere with normal transcription, producing 
aRNA molecules, may occur o~lly in some 
transgenic lines. 

In gene silencing, also called "quelling" in 
crassa (10): three classes of quelling-defec- 

tive mutants (qde-1, qde-2, and qcle-3) have 
been isolated (11). To clone the qde-3 gene, we 
used random insertional mutagenesis of an al-1 
(albino-1) transgenic strain showing an albino 
(white) phenotype as a consequence of post- 
transcriptional silencing of the endogenous al-1 
gene, which is involved in the biosynthesis of 
carotenoids (12). Mutation of qde genes releas- 
es al-1 gene silencing, resulting in the recovely 
of a wild-type (orange) phenotype that can be 
easily selected by visual inspection. A strain 
(627) showing the recovery of al-I gene ex- 
pression was isolated. By using a heterokaryon 
complementation analysis, we found that strain 
627 belongs to one of the three previously 
identified qde complementation groups, qde-3. 
To isolate the qde-3 gene, we obtained (by 
plas~llid rescue) genomic DYA from strain 627 
flankmg the insertion site (13). Two genomic 
cosmids were isolated by using the flanking 
sequences as a probe and were found to com- 

plement the qde-3 mutants, resulting in restora- 
tlon of al-I gene s~lencing that was v~sible as 
the appearance of a white phenotype. Furtller- 
more, a 9-kb Sph I fragment derived from the 
cosmids complemented qde-3 mutants. This 
DYA fragment was sequenced, revealing a long 
open reading frame of -6 kb that contains two 
putative introns identified by splicing consen- 
sus sequences and mapped by reverse tran- 
scnptase-polymerase cham reactlon (RT-PCR) 
(14). To demonstrate that the putative 6-ltb 
open read~ng frame is coincident wit11 the qde-3 
gene. we mapped the insertion site of the tag- 
ging plasmid in the qde-3 mutant strain 627. 
The tagging plasmid was inserted immediately 
downstream from the second intron of the 
qde-3 gene, within the 3'-terminal acceptor site. 

The putative QDE3 protein deduced from 
the qde-3 nucleotide sequence contains 1955 
amino acids. The encoded QDE3 polypeptide 
has a calculated molecular weight of 216,612 
daltons. Using the predicted QDE3 peptide in a 
BLASTP search of amino acid sequence data- 
bases (IS), we identified homologies wit11 sev- 
eral peptides belonging to the family of RecQ 
DNA helicases. Homology is restricted to a 
350-amino acid domain located in the center 
region of the polypeptide (residues 875 through 
1228). This domain is coincident with the seven 
helicase domains that are strongly consenred 
among the RecQ helicases in organisms rang- 
lng fkom Escherzchia coli to llumans (Fig. 1). 

A 

recQ - E, coii 

rphl 1 FA k?4- I Sch. po~nbe 

qde-3 I HE2A m I N. crassa 

SGSl I B H  I I S cerevisiae 

NfiV 1 V- 1 Human 

BLM 1 rn m m  1 Human 

Fig. 1. qde-3 belongs t o  the RecQ DNA helicase family. (A) Schematic 
representation o f  the  members o f  the RecQ DNA helicase family. The 
names of the gene products and the organisms are shown. The solid 
areas indicate the conserved helicase domains. Acidic domains are 
shown as shaded boxes. (B) Amino acid sequence alignment of the 
helicase domains of the  members o f  the RecQ DNA helicase family 
(27). The gene product names and the positions o f  amino acid 
residues are shown, Identical residues are shown in black; dashes 
indicate spaces introduced t o  maintain sequence alignment. Boxes 
above the sequences indicate the positions of seven helicase domains 
(I, la, 11, Ill, IV, V, and VI). 
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The qde-3 helicase domain shows the highest 
simila~ity with the Sgsl protein of Saccharomy- 
ces cerevisiae (54% identity) and the Rqhl 
protein of Schizosaccharomyces ponzbe (55% 
identity). Among RecQ proteins, however, 
QDE3 appears to belong to a subfamily of 
proteins that are considerably larger than the E. 
coli prototype (Fig. 1A). Related proteins be- 
longing to this subfamily include three human 
genes [BML (Bloom's syndrome gene) (16), 
WkV (Werner's syndrome gene) (17), and 
RecQ4 (18)] and yeast genes Sgsl (19) from S. 
cerevisiae and Rqhl (20) from Sch, ponzbe. 
Other regions of the QDE3 protein. like the 
proteins of the human and yeast subfamilies, 
are rich in charged and polar amino acids, and 
the hX,-terminal region contains acidic do- 
mains (Fig. 1A). 

The yeast Sgslp and the murine WRN in- 
teract with DNA topoisomerases (19, 21). To 
test for an interaction between QDE3 and topo- 
isomerases in IVeurosporn, we assayed the seh- 
sitivity of several qde-3 mutants to the type I1 
topoisomerase inhibitor, etoposide, and to the 
type I topoisomerase inhibitor, camptothecin 
(22). Etoposide, used at high concentration (10- 
fold higher than that generally used), did not 
show an ihbi tory effect on either mutant or 
wild-type strains, indicating that Areu~.ospora 
cells have low sensitivity to this drug. In camp- 
tothecin sensitivity assays: three qde-3 mutant 
strains [627 and two ultraviolet (LV) inadia- 
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Fig. 2. Sensitivity of qde-3 No 
mutants to type I topo- 
isomerase inhibitor, camp- 6 
tothecin. Three qde-3 mu- 
tants (strain 627, M17, and 5 camptothecin 
M18), a wild-type strain 
( WT), an al-7 silenced 
strain (6XW), a qde- 7 mu- 
tant strain (MZO), and a 
qde-2 mutant strain (M10) 2 
were assayed for sensitivi- 
ty to camptothecin. Strains 1 
were grown in liquid cul- 
tures in the presence of 
different concentrations of Z Z  < g n Z n E n  
camptothecin as indicated. q g z z 4 z  < S Z Z 4 Z  * $ S Z Z 4 Z  
For each mutant strain +3 

mutants 
&3 

mutants 
+3 

tested, the mass (in grams) mutants 
of dried mycelia after 48 
hours of growth is shown. Error bars indicate SD. 

tion-induced mutants, MI7 and MI81 showed 
a dramatic increase of sensitivity to the inhibitor 
(Fig. 2). By contrast, the control strain (6XW), 
which has the same genetic background as the 
qde-3 mutants, and the qde-1 (M20) and qde-2 
(M10) mutant strains did not show increased 
sensitivity to camptothecin. Thus, the reason for 
increased sensitivity of qde-3 strains to the type 
I topoisomerase inhibitor camptothecin is prob- 
ably a consequence of mutations within the 
qde-3 gene. 

The fact that the qde-3 gene encodes a 
putative DNA helicase suggests a role for this 
gene in the activation step of gene silencing. 
A model for qde-3 function shows that the 
QDE3 DNA helicase could unwind double- 
stranded DNA, which may be required for 
DNA-DNA interactions between transgenic 
repeats. In addition, the DNA-pairing model 
proposes that DNA interaction between trans- 
genes may induce changes in methylation or 
chromatin structure (or both), producing an 
"altered state" that could result in aRNA 
production (9).  It has been proposed that 
DNA helicase or topoisomerase complexes 
may be involved in chromatin remodeling 
(23). The fact that QDE3 probably interacts 
with topoisomerases in vivo may suggest that 
QDE3 may have also a role in chromatin 
changes required for aberrant transcription. 
Alternatively, it has been proposed (3) that 
aRNAs could be dsRNAs produced from 
transgenic inverted repeats (IRs). The ability 
of RecQ helicases to process cruciform DNA 
structures (24) may indicate that QDE3 could 
be involved in resolving transgenic IR cruci- 
forms to allow transcription of dsRNAs. 

Eukaryotic RecQ DNA helicases have been 
generally implicated in DNA repair and in reg- 
ulating recombination (16, 17: 20). Our find- 
ings suggest that a specific RecQ helicase could 
be involved in a function other than DNA re- 
combination and repair. In fact, in ~Veu~ospora, 
QDE3 seems to be specialized in gene silenc- 
ing, because we found that the mutation in the 
qde-3 gene is sufficient to impair quelling, al- 

though at least another FecQ homologous gene 
is present in ATe~[ellr.ospoi.a (25). Moreover, qde-3 
mutant strains and a wild-type strain showed 
the same ability to repair DNA damage induced 
by several mutagens (26). 

The fact that RecQ-like protein is in- 
volved in gene silencing in ;Vei[iospova has 
begun to help us to understand the PTGS 
phenomenon. It also presents the obvious 
oppo~tunity to test whether homologous ellr.ecQ 
genes may be implicated in gene silencing in 
other organisms, especially in plants. This 
new function of a RecQ protein may also 
contribute to a deeper understanding of the 
biology of the vecQ gene family and its func- 
tion in higher eukaryotes, including humans. 
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