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Subsets of murine C D 4 +  T cells localize t o  different areas of the spleen after 
adoptive transfer. Na'ive and T helper 1 (TH1) cells, which express the chemokine 
receptor CCR7, are home t o  the periarteriolar lymphoid sheath, whereas ac- 
tivated T,2 cells, which lack CCR7, form rings at the periphery of the T cell zones 
near B cell follicles. Retroviral transduction of T,2 cells wi th  CCR7 forces them 
t o  localize in a TH1-like pattern and inhibits their participation in B cell help in 
vivo but not in vitro. Thus, differential expression of chemokine receptors 
results in unique cellular migration patterns that are important for effective 
immune responses. 

Trafficking of cells within secondary lymphoid 
tissues is carefully orchestrated to ensure that 
antigen-specific T cells are able to deliver help 
to antigen-specific B cells (1, 2). Recent studies 
have shown that chemokines are important in 
regulating leukocyte trafficking within second- 
ary lymphoid tissues (3). Treatment of lympho- 
cytes with pertussis toxin, a potent inhibitor of 
chemokine receptor signaling, prevents them 
from entering the splenic white pulp (4). The 
chemokines SLC and ELC, which signal 
through the chemokine receptor CCR7, and the 
chemokine BLC, which signals through the 
chemokine receptor CXCR5, are constitutively 
expressed in secondary lymphoid tissues and 

'Division of Allergy and Immunology, Department of 
Internal Medicine; *Center for Immunology, Washing- 
ton University School of Medicine; 3Howard Hughes 
Medical Institute, St. Louis, MO 631 10, USA. 

seem to be particularly important in establish- 
ing normal lymphoid architecture and traffick- 
ing patterns (5, 6). CCR7- and CXCR5-defi- 
cient mice have disturbed lymphoid architec- 
ture and impaired immune responses, as do 
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stimulated, in vitro-differentiated ovalbumin 
(OVA)-specific T , 1  and T ,2  cells from 
DO 1 1.10 transgenic mice into BALB~C recipi- 
ents and immunized the recipients with OVA 
(12). Two days later, we defined the localiza- 
tion of the transferred cells by immunostaining 
frozen sections of spleen and popliteal lymph 
nodes (LNs) (13). Transfesred TH1 and naYve 
cells were concentrated within the periarteriolar 
lymphoid sheaths (PALS) (Fig. 1, A to C). In 
contrast, transferred T,2 cells formed loose 
rings around the outer PALS in close proximity 
to the B cell zones. The localization patterns in 
the spleen were the same with and without 
antigen immunization. Similar patterns were 
seen at 1, 4, or 8 days after transfer with the 
exception that transferred TH2 cells were diffi- 
cult to detect by 8 days in vivo (Web figure 1). 
In the popliteal LN (Fig. 1, D to F), T,1 and 
T,2 cells were both found primarily in the 
outer cortex in the parafolliculas areas. Naive 
cells were found in similar locations except that 
they were recruited in larger numbers and were 
found throughout the medulla as well. In the 
absence of local antigen, T,1 and T,2 cells 
were not detected in the LN, and na&e cells 
were detected in only small numbers. Pretreat- 
ment of the T cells with pertussis toxin before 
transfer disrupted their localization patterns 
within the spleen and conlpletely prevented 
migration into the popliteal LN, suggesting a 
dependence on chemokine receptor signaling 
(Web figure 2). 

Analysis of activated murine T, 1 and TH2 
cell chemokine receptor expression by ribo- 
nuclease protection assays and Northern 
(RNA) blotting (14) revealed distinct recep- 
tor repertoires in the two populations (Fig. 2, 
A and B). TH1 and T,2 cells expressed sim- 
ilar levels of CCR1, CCR2, and CCR4 
mRNA. T , 1  cells vreferentiallv expressed 
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Fig. 1. TH1, TH2, and 
naive CD4- T cells dis- 
play different localiza- 
tion patterns within 
secondary lymphoid 
tissues. BALBIc mice 
received an iv infusion 
of 2 x lo7 T cells, and 
then were immunized 
with 100 k g  of OVA in 
incomplete Freund's 
adjuvant ip (A t o  C) or 
in the footpad (D to  F). 
Two days later the 
spleen and popliteal 
LNs from each mouse 
were collected. Frozen 
sections were stained 
with the clonotypic 
antibody Kjl-26 (blue) 
t o  identify the trans- 
ferred cells and with 
anti-6220 [brown) t o  

Nalve 

identify B ;ell folficles. Shown are spleens (A t o  C) and LNs (D t o  F) of recipients of TH1 cells (A and D), TH2 cells (B and E), and naTve CD4+ T cells 
(C and F). 

CD4' T cells showed even higher levels of 
CCR7 mRNA than in T, 1 cells (15). CCR7 
expression was unaffected by addition of in- 
terleukin-2 (IL-2) to the cultures over a peri- 
od of up to 14 days (Web figure 3). 

Next we tested whether the differences in 
receptor expression resulted in functional dif- 
ferences by measuring calcium fluxes in re- 
sponse to treatment with chemokines (16). T, 1 
cells responded to SLC with calcium fluxes in a 
dose-dependent manner, whereas TH2 cells 
failed to respond to SLC at any dose tested up 
to 300 ngiml (Fig. 3A). To determine if expres- 
sion of either CCR7 or CXCR3 was sufficient 
to confer SLC responsiveness, T,2 cells were 
stably transduced with chemoklne receptor 
genes or vector controls by using a retroviral 
system (1 7) and then tested for SLC respon- 
siveness. TH2 cells transduced with CCR7 re- 
sponded to SLC in a manner similar to control 
TH1 cells (Fig. 3B). Neither CXCR3-trans- 
duced nor control TH2 cells responded to SLC 
at the concentrations tested. although transduc- 
tion with CXCR3 did confer responsiveness to 
the CXCR3 ligand Mig (18). 

To determine if CCR7 expression was re- 
sponsible for the differences in localization pat- 
terns between T, 1 and TH2 cells, we adoptive- 
ly transferred TH2 cells transduced with the 
retrovirus encoding CCR7 or the control retro- 
virus into wild-type BALBIc mice. As before, 
the mice were immunized intrapentoneally 
with OVA, and 2 days later the localization 
patterns of the transferred cells were analyzed 
in the recipient spleens. Control transduced TH2 
cells showed the typical TH2 cell splenic local- 
ization pattern, forming rings around the outer 
PALS near the B cell zones (Fig. 4A). In con- 
trast, TH2 cells expressing CCR7 behaved in a 
T, 1 -like manner, clustering within the central 
PALS (Fig. 4B). The effect was CCR7-specific. 
Transduction of TH 1 cells with CCR3 or CCR8 

Fig. 2. Murine TH1 and TH2 cells A Thl Th2 Thl Th2 B Thl Th2 
differentially express the chemo- 
kine receptors CCR3, CCR5, 
CCR7, and CXCR3. RNA was pu- 
rified from TH1 and TH2 cells 7 
days after restimulation with 
OVA (323-339) peptide. (A) Ri- 
bonuclease protection assay 
with 10 k g  of RNA from TH1 or 
TH2 cells and the Pharmingen Ri- 
boQuant template sets mCR-5 
(left) and ~ C R - 6  (right). L32 and L32 - 
GAPDH are housekeeping genes 
t o  control for equal loading of - - 
the RNA. (B) Northern blot anal- OCPDH- 

ysis. Samples (40 kg) of RNA 
from TH1 or TH2 cells were ana- 

L32 - I 
lyzed with a 32P-labeled CCR7 probe. The membrane was stripped and reprobed for CXCR3 and 
then stripped and probed again for p-actin as a control for loading. 

Fig. 3. (A) TH1 cells, but not TH2 150 

cells, respond t o  the CCR7 ligand 2 

SLC. TH1 cells ( 0 )  or TH2 cells 2 
( 0 )  were loaded with Fura-2 dye ,,, 
and then analyzed by dual-wave- J 
length fluorimetry for increases 
in intracellular Ca2- concentra- 2 
t ion in response t o  SLC. Data are : 50 
plotted as the change in bulk . 
intracellular Ca2- concentration $ 
for a given concentration of SLC. 6 0 

(0) Transduction of T,2 cells 
with CCR7 but not C X C R ~  con- 
fers SLC responsiveness. T,1 or 

- 
SLC Concentration (nglml) 

TH2 cells were transduced'with 
the retroviral vector alone or the vector containing the CCR7 or CXCR3 cDNA. Transduced cells 
were then loaded with Fura-2 dye and analyzed by fluorimetry for their responsiveness t o  SLC. 
Shown are data for TH1 cells transduced with vector (O), TH2 cells transduced with vector (0), TH2 
cells transduced with CCR7 (O), and TH2 cells transduced with CXCR3 (A). 

and transduction of TH2 cells with CXCR3 had the central PALS, suggesting that the action of 
no detectable effect on the microanatomic lo- CCR7 is dominant. 
calization of these cells in the spleen. TH2 cells The proximity of the antigen-stimulated 
expressing BLR-1 formed clusters of cells TH2 cells to the B cell zones in the spleen 
within the B cell follicles (1 9). TH1 cells trans- together with their known abilities to provide 
duced with BLR-I remained primarily within help for B cells suggested that the loss of CCR7 
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Fig. 4. Forced expression of CCR7 in TH2 cells 
results in a TH1-like splenic localization pattern. 
TH2 cells were transduced with the retroviral 
vector alone (A) or with the vector containing the 
CCR7 cDNA (B). Transduced cells (2 X 10') were 
adoptively transferred into BALBIc recipient mice. 
Two days later, frozen sections from spleens of 
recipients were stained with KJ1-26 antibody 
(blue) to identify the transferred cells and with 
B22O (brown) to identify the B cell follicles. 

expression on differentiated TH2 cells might be 
necessary for efficient delivery of B cell help. 
To test this hypothesis, we transferred B cells 
purified from NP-BSA [(4-hydroxy-3-nitrophe- 
nyl) acetyl-bovine serum albumin]-primed 
mice into sublethally irradiated naive recipients 
together with lo5 OVA-specific CCR7-ex- 
pressing or control TH2 cells (20). The recipi- 
ents were immunized intraperitoneally with 
NP-OVA, and 7 days later sera were analyzed 
for anti-NP IgGl antibodies. In parallel, we 
cultured a portion of the primed B cells together 
with the CCR7-expressing or control TH2 cells 
in medium containing either NP-OVA or NP- 
KLH (keyhole limpet hemocyanin). In vitro, 
where the T cells and B cells were not physi- 
cally segregated, both CCR7-expressing and 
control TH2 cells were effective in providing B 
cell help when the appropriate antigen, NP- 
OVA, was present (Fig. 5A). Anti-NP IgGl 
was not detected when the cells were cultured 
with NP-KLH. In contrast, CCR7-expressing 
TH2 cells were impaired in their ability to help 
B cells in vivo, presumably because the forced 
expression of CCR7 directed these cells to the 
inner PALS away from the splenic B cell zones 
(Fig. 5B). Similar results were obtained when 
CCR7-expressing or control TH2 cells were 
transferred to T cell-deficient (TCRP-I-) mice 
rather than irradiated wild-type mice (21). 

CCR7 expression levels, therefore, are a$- 
ical in d e t e e g  the location and consequent- 
ly the function of CD4+ T cell subsets within 

Fig. 5. CCR7 expres- 
sion impairs the abili- 
ty of TH2 cells to help 
B cells in vivo but not 
in vitro. (A) Evaluation 
of helper function in 

NP-KLH - 
vitro. 'Splenic B cells ,- 
were purified from 
mice immunized 14 5 

1 H 8 

days earlier with 100 6 
pg of NP-BSA in com- ' 0.5 
plete Freund's adju- 
vant. B cells (1 X lo6) o 
were then mixed with 

1 , , . ? 1 0  ; 1 
z 
G i g  9 Th2 Th2 B cells 10' TH2 cells that had B Vector C W  only 

been transduced with 
the control retrovirus 

N E ; E  E 
(TH2 vector) or with 
the CCR7-encoding retrovirus (T,2 CCR7) cells and incubated in a 96-well dish in the presence of 
either NP-OVA (10 pglml) or NP-KLH (10 pglml). After 48 hours, the cells were washed and given 
fresh medium. Five days later the supernatants were collected and anti-NP lgCl titers were 
measured by ELISA. (8) Evaluation of helper function in vivo. Primed B cells (1 X lo7), purified as 
in (A), were adoptively transferred to irradiated BALBIc mice either alone or mixed with lo5 TH2 
cells that had been transduced either with the control retrovirus (vector) or with the CCR7- 
encoding retrovirus (CCR7). The mice were then immunized with 100 pg of NP-OVA adsorbed to 
alum. Sera were collected 7 days Later and analyzed by ELISA for anti-NP lgCl antibodies. Statistical 
comparisons were made by Student's t test. 

the spleen. NaTve cells expressing CCR7 are 
retained in the central PALS (Fig. 1C) near 
interdigitating dendritic cells that are highly 
effective at presenting antigen to naive cells. 
Antigen-stimulated TH2 cells, which are effec- 
tive at promoting humoral responses, lose 
CCR7 expression and migrate to the peripheral 
T cell zones in close proximity to the B cell 
zones (Fig. 1B). Indeed, retention of the TH2 
cells in the PALS by forced expression of 
CCR7 intmpts delivery of B cell help (Figs. 4 
and 5). TH1 cells, which are poor B cell helpers, 
maintain CCR7 expression and are retained in 
the PALS (Fig. 1A). The functional signifi- 
cance of the TH1 location remains unknown, 
but it could be important for regulation of cy- 
tolytic CD8+ T cells that traffic through the 
inner PALS (22). Also, the cellular require- 
ments for inducing an IgG2a response are un- 
clear. The microanatomic separation between 
interferon-y (EN-ybecreting TH1 cells and B 
cells in the spleen would seem to prohibit IFN- 
y-dependent class switching to IgG2a in this 
tissue. Interestingly, in the LN both TH1 and 
TH2 cells are in close proximity to the B cell 
zones, suggesting that there the TH1 cells may 
more readily participate in B cell help (Fig. 1, D 
to F). In the spleen, the location of the TH 1 and 
TH2 cells could also influence the type of anti- 
gen-presenting cells encountered. CD 1 1 b ~ * '  
dendritic cells of monocyte lineage have been 
shown to reside primarily in the mar@ zones 
and outer PALS, whereas CDllbdu", CD8+ 
dendritic cells of lymphoid origin are believed 
to migrate preferentially to the central T cell 
areas (23). Treatment of mice with granulocyte- 
macrophage colony-stimulating factor, which 
increases the number of macrophage-related, 
CDl lbb"gh' dendritic cells, increases TH2 re- 
sponses. Treatment of mice with Flt3-ligand, 

which increases the number of lymphoid-relat- 
ed dendritic cells, increases TH1 responses 
(24). Thus, selected aspects of the spleen mi- 
croenvironment appear specifically adapted to 
mediate selected immune responses. 
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In vitro PA28 binds and activates proteasomes. It is shown here that mice with 
a disrupted PA28b gene Lack PA28a and PA28b polypeptides, demonstrating 
that PA28 functions as a hetero-oligomer in vivo. Processing of antigenic 
epitopes derived from exogenous or endogenous antigens is altered in PA28-'- 
mice. Cytotoxic T Lymphocyte responses are impaired, and assembly of im- 
munoproteasomes is greatly inhibited in mice lacking PA28. These results show 
that PA28 is necessary for immunoproteasome assembly and is required for 
efficient antigen processing, thus demonstrating the importance of PA28- 
mediated proteasome function in immune responses. 

Cytotoxic T cells eliminate infected cells by in vitro by the interferon-inducible protea- 
recognizing foreign antigens processed in a some regulators PA28a and PA28b (2, 3). A 
proteasome-dependent manner and presented role for PA28 in MHC class I antigen pre- 
by class I molecules of the major histocom- sentation has been suggested (3, 4). Howev- 
patibility complex (MHC) (I). The peptidase er, the underlying mechanism by which PA28 
activities of the proteasome can be activated influences antigen processing via a protea- 

2162 10 DECEMBER 1999 VOL 286 SCIENCE www.sciencemag.org 



You have printed the following article:

The Role of CCR7 in T<sub>H</sub>1 and T<sub>H</sub>2 Cell Localization and
Delivery of B Cell Help in Vivo
David A. Randolph; Guangming Huang; Cynthia J. L. Carruthers; Lindsay E. Bromley; David D.
Chaplin
Science, New Series, Vol. 286, No. 5447. (Dec. 10, 1999), pp. 2159-2162.
Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819991210%293%3A286%3A5447%3C2159%3ATROCIT%3E2.0.CO%3B2-T

This article references the following linked citations:

References and Notes

2 Visualization of Specific B and T Lymphocyte Interactions in the Lymph Node
Paul Garside; Elizabeth Ingulli; Rebecca R. Merica; Julia G. Johnson; Randolph J. Noelle; Marc K.
Jenkins
Science, New Series, Vol. 281, No. 5373. (Jul. 3, 1998), pp. 96-99.
Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819980703%293%3A281%3A5373%3C96%3AVOSBAT%3E2.0.CO%3B2-K

5 A Chemokine Expressed in Lymphoid High Endothelial Venules Promotes the Adhesion and
Chemotaxis of Naive T Lymphocytes
Michael D. Gunn; Kirsten Tangemann; Carmen Tam; Jason G. Cyster; Steven D. Rosen; Lewis T.
Williams
Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 1.
(Jan. 6, 1998), pp. 258-263.
Stable URL:

http://links.jstor.org/sici?sici=0027-8424%2819980106%2995%3A1%3C258%3AACEILH%3E2.0.CO%3B2-C

11 Selective Expression of the Eotaxin Receptor CCR3 by Human T Helper 2 Cells
Federica Sallusto; Charles R. Mackay; Antonio Lanzavecchia
Science, New Series, Vol. 277, No. 5334. (Sep. 26, 1997), pp. 2005-2007.
Stable URL:

http://links.jstor.org/sici?sici=0036-8075%2819970926%293%3A277%3A5334%3C2005%3ASEOTER%3E2.0.CO%3B2-F

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 2 -

NOTE: The reference numbering from the original has been maintained in this citation list.



18 The CC Chemokine 6Ckine Binds the CXC Chemokine Receptor CXCR3
Hortensia Soto; Wei Wang; Robert M. Strieter; Neal G. Copeland; Debra J. Gilbert; Nancy A.
Jenkins; Joseph Hedrick; Albert Zlotnik
Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 14.
(Jul. 7, 1998), pp. 8205-8210.
Stable URL:

http://links.jstor.org/sici?sici=0027-8424%2819980707%2995%3A14%3C8205%3ATCC6BT%3E2.0.CO%3B2-1

24 Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response in vivo
B. Pulendran; J. L. Smith; G. Caspary; K. Brasel; D. Pettit; E. Maraskovsky; C. R. Maliszewski
Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 3.
(Feb. 2, 1999), pp. 1036-1041.
Stable URL:

http://links.jstor.org/sici?sici=0027-8424%2819990202%2996%3A3%3C1036%3ADDCSDR%3E2.0.CO%3B2-2

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 2 -

NOTE: The reference numbering from the original has been maintained in this citation list.




