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Perforin Gene Defects in 
Familial Hemophagocytic 

Lymphohistiocytosis 
Susan E. Stepp," Remi Dufourcq-Lagelouse,' 
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Porunelloor A. mat he^,^ Jan-lnge Henter,' Michael Bennett," 
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Familial hemophagocytic lymphohistiocytosis (FHL) is a rare, rapidly fatal, auto- 
soma1 recessive immune disorder characterized by uncontrolled activation of T cells 
and macrophages and overproduction of inflammatory cytokines. Linkage analyses 
indicate that FHL is genetically heterogeneous and linked t o  9q21.3-22, 10q21-22, 
or another as yet undefined locus. Sequencing of the coding regions of the perforin 
gene of eight unrelated 10q21-22-linked FHL patients revealed homozygous non- 
sense mutations in four patients and missense mutations in the other four patients. 
Cultured lymphocytes from patients had defective cytotoxic activity, and immu- 
nostaining revealed little or no perforin in the granules. Thus, defects in perforin 
are responsible for 10q21-22-linked FHL. Perforin-based effector systems are, 
therefore, involved not only in the lysis of abnormal cells but also in the down- 
regulation of cellular immune activation. 

FHL is a hemophagocytic lymphohstiocytic 
disorder in which previously healthy young chil- 
dren present with fever, splenomegaly, hepato- 
megaly, pancytopenia, coagulation abnormali- 
ties, neurological abnormalities, and high serum 
concentrations of interferon-y (IFN-y) and tu- 
mor necrosis factor- (TNF-a). Accumulation 
of activated macrophages and lymphocytes, 
mainly CD8+ human lymphocyte antigen DR+ 
Fast T cells, as well as hematophagocytosis in 
the bone marrow, spleen, liver, lymph nodes, 

and central nervous system, dominate the pa- 
thology (1-3). Defective T and natural luller 
(NK) cell cytotoxicity is consistently reported 
(4, 5). We hypothesized that the primary inher- 
ited defect in FHL could be a failure of cytolytic 
lymphocyte function and that this, together with 
childhood infections (6, 7), induces the fatal 
immune deregulation of FHL. 

The gene encoding perforin, an important 
mediator of lymphocyte cytotoxicity, has 
been mapped to 10q22 (8), near one of the 
previously identified FHL-linked loci (9, 10). 
Thus, perforin deficiency may play a role in 
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Fig. 1. Perforin gene 
mutations are found in 
FHL patients. (A) The 
perforin gene (PRFI, 
OMlM 170280) maps 
to  the centromeric por- 
tion of the 10q21-22 
FHL locus as deter- 
mined by PCR screen- 
ing of the partial YAC 
contig shown. This lo- 
calized perforin to  
10q21. YAC clones are 
listed in the left col- 
umn, and the radiation 
hybrid markers in the 
13-centimorgan chro- 
mosome region of 
10q21-22 are shown 
across the top. (B) Dia- 
gram of the perforin 
gene. Perforin has three 
exons, two of which 
(exons 2 and 3) contain 
coding sequences. The 

b b b b b b b b b b b b b b b b b  

locations of the primers IPatient Nucieotide change Predicted effect 
used and mutations 

ers specific for exon 2 of perforin (Fig. 1, A and 
B). This allowed us to more precisely map 
perforin to 10q21. Next we studied eight unre- 
lated 10q21-22-linked FHL patients (9) by se- 
quencing the coding regions of the perforin gene 
in exons 2 and 3. Five of the patients were from 
consanguineous families (P4, P6, P21, P29, and 
P34), and the other three patients were from 
nonconsanguineous families (P5, P11, and P25). 

Nine independent mutations in exons 2 and 3 
of the perforin gene were detected (Fig. 1B). 
Patients P21 and P34 had the same homozygous 
point mutation that led to a premature stop 
codon in exon 3. Patient P29 had a distinct 
homozygous point mutation that also led to a 

found are shown. (C) 
Perforin gene muta- 
tions are found in eight 
FHL patients. Nucleo- 
tide and amino acid po- 
sitions of the muta- 
tions are numbered ac- 
cording t o  National 
Center for Biotechnolo- 
gy Information acces- 
sion number M28393. 

premature stop codon. Each parent of patient 
P29 was heterozygous for this mutation. A sin- 

p4 ** 50 del T L 17 frameshlft and stop 

~ 2 1  ** 1122 G>A w 374 stop 
~ 2 9  ** 190 C>T Q 64 stop 

~ 3 4  ** 1122 G>A w 374 stop 
PS * 673 C>T R 225 w 
PS * 1286 G>A G 429 E 

P 6 ** 1034 C>T P 345 L 

PII * 836 G>A c 279 Y 
~ 1 1  * 548 T>G v 183 G 
p~~ * 755 A>G N 252 s 

gle homozygous nucleotide deletion found near 
the beginning of exon 2 in patient P4 caused a 

Homozygous mutations are identified by a double asterisk (**), and heterozygous mutations are 
identified by a single asterisk (*) (30). Single-letter abbreviations for the amino acid residues are as 
follows: C, Cys; E, Clu; C, Cly; L, Leu; N, Asn; P, Pro; Q, Cln; R, Arg; S, Ser; V, Val; W, Trp; and Y, Tyr. 

frameshift and introduced a premature stop 
codon. In the four remaining patients (P5, P6, 
P11, and P25), six missense mutations were 
identified, each one leading to a different amino 
acid substitution (Fig. 1C). A single homozy- 
gous missense mutation was seen in patient P6, 
and two heterozygous missense mutations were 
seen in each of patients P5 and P11. Only one 
heterozygous missense mutation was identified 

in the perforin coding sequence of patient P25. 
The premature stop codon of four patients 

would be predicted to give rise to a truncated, 
nonfunctional perforin protein. The missense 
mutations found in the other four patients 
may affect the synthesis, stability, or function 
of perforin. Alternatively, unidentified muta- 
tions affecting transcription of the perforin 
gene or the splicing or stability of perforin 
RNA may exist in the noncoding regions. To 
confirm that defective perforin can account 
for FHL disease in these patients, we tested 
the perforin-mediated cytolytic capabilities of 
patient cells. 

Cytotoxic activity of T cells and NK cells in 
short-term in vitro assays can be mediated both 
by perforin and Fas-dependent pathways (13). A 
defect in the FasiFasL system is unlikely to 
contribute to the pathogenesis of FHL because 
Fas and FasL do not map to the FHL locus at 
10q21-22 and because FasFasL-mediated cell 
death is normal in FHL (14,15). To focus on the 
perforin-dependent component of cytotoxicity, 
we selected Fas-deficient murine L1210-3 cells 
as target cells (13). In addition, we added ZB4, 
a monoclonal antibody to Fas (anti-Fas) that 
interrupts Fas-FasL interactions to ensure that 
the cytotoxicity assays would detect only per- 

0.1 1 10 0.1 1 10 
Effector 1 Target 

Fig. 2. Anti-CD3-dependent cytotoxicity of 
FHL patient cells is defective. (A) M, control 
cells; e, patient P21 cells; *, patient P25. (B) 
M, control cells; a, patient P5 cells; *, patient 
P11. Patient or control cells were cultured in 
PHA (11700 dilution; Difco, Detroit, Michigan) 
and IL-2 (20 IUIml, Valbiotech) for 1 day, fol- 
lowed by IL-2 without PHA for 5 days. CD8+ T 
cells were enumerated by fluorescence-activat- 
ed cell sorting analysis [(A): control = 76%, 
P21 = 23%, P25 = 40%; (B): control = 38%, 
P5 = 62%, PI  1 = 17%]. The lysis of Fas- 
deficient L1210-3 target cells (kindly provided 
by P. Colstein, Marseille, France) was measured 
in a standard 4-hour SICr-release assay after a 
3-hour incubation of the effector cells in the 
presence of monoclonal anti-CD3 (OKT3; Or- 
tho Pharmaceutical, Rajitan, New Jersey). The 
cytotoxicity under these culture conditions and 
in this assay system is CD3-dependent (37). 
The effector t o  target ratio reflects the ratios of 
CD8+ T cells t o  target cells. To abrogate any 
residual FasIFasL-dependent cytotoxicity, we 
used anti-Fas 284 (Immunotech, Marseille, 
France), at 2 ~ g l m l ,  t o  block Fas. The results 
are expressed as percentage of specific lysis. 

forin-dependent lulling. To generate cytotoxic 
cells, we cultured previously frozen cells from 
four FHL patients and controls in phytohemag- 
glutinin (PHA) and interleukin-2 (IL-2). CD3- 
dependent cytolytic activity was measured in a 
4-hour "Cr-release assay. Cells from all patients 
had greatly reduced cytolytic activity as com- 
pared with normal controls (Fig. 2). Cells from 
a patient with a premature stop codon (P21) 
displayed no cytotoxicity. Cells from three pa- 
tients with missense mutations (P5, P1 l ,  and 
P25) showed greatly reduced lysis of the target 
cells. We conclude that perforin-mediated cyto- 
.toxic activity of CD8+ T cells is defective in 
FHL patients. 

To determine whether the reduced cytotox- 
icity of patients' cells was due to lack of perforin 
or the presence of nonhctional perforin pro- 
tein, we immunostained cytotoxic cells obtained 
from three patients (Fig. 3). Perforin and gran- 
zyme B showed the expected pattern of colocal- 
ization in the cytotoxic granules of the controls 
(Fig. 3, A and C). However, staining of the 
patient-derived cells revealed a complete (pa- 
tient P21, Fig. 3D) or nearly complete (patients 
P5 and P25, Fig. 3, B and E, respectively) 
absence of perforin. The small amount of per- 
forin in cells from patients P5 and P25 may 
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Fig. 3. Perforin protein is defi- Perkrh Both 
cient in FHL patient cytotoxic 
cells. Cells were double stained 
with anti-granzyme B (red, first 
column), anti-perforin (green, 
second column), or both (third 
column) in two experiments. (A) 
and (B) show single cells at high 
magnification; (C), (D), and (E) 
show several cells at a lower 
magnification. (A) Control for 
patient P5. (B) Patient P5. (C) g 
Control for patients P21 and 
P25. (D) Patient P21. (E) Patient 
P25. PHA-activated cells from 
controls and FHL patients cul- 
tured 6 days in IL-2 (as described 
previously in Fig. 2) was fixed on 
glass cover slips previously coat- 
ed with poly-L-lysine. They were 
permeabilized and stained for 
anti-granzyme B (Chemicon In- 
temational, Temecula, Califor- 

tetramethyl rhodamine isothio- 
cyanate-coupled goat antibody 

fluorescein isothiocyanate-cou- 

!I 
nia) and with secondary stain 

t o  mouse IgC, as well as with 

pled monoclonal anti-perforin 
(Ancell, Bayport, Minnesota). Im- 
mun~flu~rescence was exam- 
ined by confocal laser microsco- 
py. The frequency of granzyme B 
in CD8+ T cells was similar in 
patient and control samples. 6 
explain their low-level cytotoxic activity (Fig. 
2). Cells from patient P25 with a single het- 
erozygous missense mutation had greatly re- 
duced cytotoxic activity as well as grossly defi- 
cient perforin protein. This could be explained if 
the single missense mutation acts in a dominant 
negative manner. However, because patient 
P25's parents did not have FHL (9), this is 
unlikely. It is more likely that an additional 
unidentified mutation or mutations exist in the 
noncoding regions that have led to the reduced 
perforin protein level and cytotoxic activity. 
Fas/FasL-mediated apoptosis was also normal 
in this patient (15). 

A role for perforin in immune regulation 
may be inferred from recent studies in mouse 
models of LCMV infection (11, 12, 16, 17), 
bone marrow transplantation (I@, immuniza- 
tion (Is), and autoimmunity (20,21). However, 
the physiologic role of perforin in maintaining 
immune homeostasis au ld  not be determined 

lymphocytes (CTLs) may be eliminated by per- 
forin-dependent cytotoxicity (22-25). In the ab- 
sence of APC elimination, CTLs may wntinue 
to receive activation and proliferation signals. 
Alternatively or additionally, AICD of activat- 
ed T cells could be impaired in the absence of 
perforin (12, 18, 26). However, defective 
AICD alone is unlikely to be responsible for 
FHL because partial as well as full engraftment 
of donor bone marrow can cure FHL (27). This 
suggests that the disease is due to the absence of 
perforin-competent cells rather than the pres- 
ence of perforin-defective cells. The critical 
role of the Fas-FasL pathway of cell death in 
immune homeostasis is demonstrated by the 
human disease autoimmune lymphoprolifera- 
tive syndrome (ALPS) type I, caused by defec- 
tive FasFasL function (28, 29). However, the 
course and pathology of ALPS type I are quite 
distinct from those of FHL. Fas deficiency 
causes a spontaneous and chronic autoimmune 
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