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Spatially controlled bond foinlation has 
been realized with the STM. The fact that the 
CO ligand exhibits an inclined configt~ation in 
the Fe-Ag(ll0) system suggests that the ob- 
seived geomehy is due to the localized elec- 
tronic properties of the Fe atom. In contrast, it 
would be interesting to determine if a single CO 
molecule \vould bond perpendicularly. without 
tilting or bending. with a different metal atom. 
such as Cu, on Ag(ll0) (23). 

The binding of a diatomic molecule to an 
atom constitutes one of the simplest chemical 
transfoimations involving a molecule. By 
co~nbining the present manipulation approach 
with other mechanisms such as "sliding" (1). 
"pulling." and "pushing" (3. 4), extension of 
spatially controlled bond formation to other 
atoms and n~olecules is envisioned. The abil- 
ity to control step-by-step bond fol~nation of 
adsorbed chemical species at the single-mol- 
ecule level provides a real-space understand- 
ing and direct visualization of the nature of 
the chemical bond. An important function of 
STM-IETS lies in the confirmation and iden- 
tification of the ne\v bonds formed. 
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Mechanical Rotation of the c 
Subunit Oligomer in ATP 
Synthase (F,F,): Direct 

Observation 
Yoshihiro Sambongi,' Yuko lko,' Mikio Tanabe,' 

Hiroshi Ornote,'* Atsuko Iwamoto-Kihara,' lkuo Ueda,' 
Toshio Yanagida,3 Yoh Wada,' Masamitsu ~ u t a i l . 1  

FoF,, found in mitochondria or bacterial membranes, synthesizes adenosine 5'-  
triphosphate (ATP) coupling with an electrochemical proton gradient and also 
reversibly hydrolyzes ATP to form the gradient. An actin filament connected to a 
c subunit oligomer of F, was able to rotate by using the energy of ATP hydrolysis. 
The rotary torque produced by the csubunit oligomer reached about 40 piconewton- 
nanometers, which is similar to that generated by the y subunit in the F, motor. 
These results suggest that they and c subunits rotate together during ATP hydrolysis 
and synthesis. Thus, coupled rotation may be essential for energy coupling between 
proton transport through Fo and ATP hydrolysis or synthesis in F,. 

The proton-transporting ATP synthase, F,F,. 
consists of a catalytic sector. F, or F,-adenosine 
triphosphatase (ATPase) (a3P,y,S,~,). and a 
proton pathway. F, (a,b,c,,) (1, 2). The crystal 
structure of the bovine oc,P3y complex indicates 
that the a and p subunits are arranged altemate- 
ly around the NH,- and COOH-terminal oc he- 
lices of the y subunit (3). The isolated F, hy- 
drolyzes ATP, folloa3ed by y subunit rotation. 
\vhich is driven by conformational changes of 
the catalytic subunits (4). The y subur~it rotation 
in F, has been suggested by biochemical exper- 
iments (5 )  and has been obseived directly as 
counterclochvise rotation of an actin filament 
connected to the y subunit (6, 7). 

The y subunit rotation in F, should be trans- 
mitted to the rnernbrane sector, F,. in order to 
complete the ATP hydrolysis-dependent proton 
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transport. The detailed underlying mechanism 
of the energy transmission behveen F, and the y 
subunit remains unknoa8n. If the c subunit oli- 
gomer rotates co~~nterclocli\?lise (the same direc- 
tion as y) in the membrane. the ATP hydsolysis- 
dependent y subun~t rotatloll could be connected 
rnechanlcally to the F, sector In t h ~ s  regard, c 
sub~u~it rotation has been proposed (2, 8). How- 
ever. to the best of our lu~owledge, this possi- 
bility of e n e r a  coupling has not been studied. 

We designed several experimental systems 
to examine this possibility. The y and E complex 
1s shomn to be a rotoi (6-9) and the a. P. 6. a. 
and b complex is proposed to be a stator m F,F, 
(8) Therefore. v, e fixed F, a (01 P) subunits on 
a glass surface to demonstrate the rotatlon of an 
act111 filament connected to the F, c subu111t. 01 

con\ersely. the c subunits mere fixed and the 
rotatlon of a or /3 mas exarnlned ATP-depen- 
dent rotation was only successfully observed 
with the system described below f10). Esche- 
richia coli F,F, was immobilized on? coverslip 
though a His tag linked to the NH>teimi~~us of 
each oc sub~u~it (Fig. 1). A c subunit Glu2 was 
replaced by cysteine and then biotinylated to 
bind streptavidin and a fluorescently labeled 
actin filament. The y subunit cysteine residues 
were replaced with alanine (11) in order to avoid 
direct binding of the actin filament to this sub- 
unit. Thus. cyste~ne is present only 111 the c 
subunit of the presumed rotor complex of the 
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engineered F,F,. Specific biotinylation of 
the c subunit in F,F, was confirmed by 
protein immunoblotting with streptavidin 
(12). 

After the addition of Mg ATP (13), the 
.actin filament that was connected to the c 
subunit rotated. This rotation required Triton 
X-100 (14). Similar to the y subunit in the F, 
sector. the c subunit rotated counterclockwise 
when viewed from the membrane side (15). 
Nuclear magnetic resonance structure and 
biochemical or genetic analyses suggested 
that 12 copies of the c subunit form a sym- 
metrical cylinder in which the NH2-terminus 
including Glu2 faces the periplasmic surface 
of the central pore of -1 nm in diameter 
(16). Therefore, the actin filament may be 
connected in the vicinity of the central pore. 

Video images of the filaments connected 
to the c ,  subunits were processed through 
centroid analysis (13); thus, the time course 
of the rotation could be obtained (Fig. 2A). 
Filaments connected to the c subunit contin- 
ued to rotate for up to 2 min after the addition 
of Mg ATP, whereas filaments connected to 
the y subunit in F, often rotated for more than 
10 min (7, 12). The filaments connected to 
the c subunits ceased rotations abruptly and 
disappeared from the glass surface in all cas- 
es, possibly because of the dissociation of the 
F, sector from the F, sector. 

The rotational rates varied slightly during 
the video recording, when the scales for the 
rotation and assay time were expanded (see Fig. 
3 4  upper left trace, for an example). The rates 
of single molecules were obtained, and the av- 
erage values with deviations were plotted 
against the filament length (Fig. 2B). The re- 
sults indicate that the c subunit rotation gener- 
ates an average frictional torque of 40 p N m ,  
which is similar to the value obtained for the y 
subunit in F, (7). Thus, mechanical energy 
transmission from the y subunit to the c oli- 
gomer occurs essentially with no energy loss. 

We examined whether venturicidin, an E. 
coli membrane F$, inhibitor (1 7), could affect 
the c subunit rotation. After the addition of the 
antibiotic, the rotations frequently paused and 
started again on a subsecond scale (Fig. 3A, 
upper traces). In contrast, the y subunit rotation 
in F, remained unchanged (Fig. 3A, lower trac- 
es). The effects of venturicidin on the rotations 
of c and y subunits were statistically analyzed 
by counting the number of pauses (18). In the c 
subunit rotation, the pauses after the venturici- 
din addition increased fivefold in comparison 
with those before the addition, whereas the an- 
tibiotic had no effect on the y subunit rotation 
(Fig. 3B). The inhibitory effect on the c subunit 
rotation was dependent on the concentration 
(19) (Fig. 3B), indicating that the antibiotic must 
be binding and then dissociating from the c 
subunit oligomer. These results are consistent 
with a previous suggestion that venturicidin 
binding sites are located around c subunit Asp6' 

Fig. 1. Observation system for 
the c subunit rotation in FoFl 
established in this study. The 
fluorescently labeled actin fila- 
ment- biotin-streptavidin com- 
plex was connected t o  the cys- 
teine residue introduced at posi- 
tion 2 of the c subunit. In this 
system, all cysteine residues in 
the y subunit were replaced by 
alanine, and the s subunit does 
not contain cysteine. Therefore, 
an actin filament cannot bind t o  
the y and s subunits, which form 
a rotor with the c subunit 
(shown in this study). cGlu2Cys, 
cClu2 + cys2. 

A 

Fig. 2. Effects of actin 
filament length on the 
rotation of a filament 
connected t o  the c 
subunit. (A) The rota- 
tions (rounds) of actin 
filaments (1.5, 2.2, 
2.9, and 3.6 km) were 
recorded in the pres- 
ence of 5 mM Mg ATP. 
(B) Rotational rate 
versus length of the 
actin filament. Rotat- 
ing filaments connect- 

lr 
Actin filament 

"0 5 .  10 
Time (s) 

1 2 3 4  
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edto the c subunit at one end were analyzed. Linear segments having R values of >0.96, except 
those defined as pauses (18), were selected from traces with an expanded time scale (examples 
shown in Fig. 3A), and then rotational rates were calculated. The average values for the rotational 
rates (-20 data points) are plotted with standard deviations (error bars) against filament Length 
(solid circles). Frictional torque T was calculated with T = (h13)oqL 3/[ln(LIZr) - 0.4471, where 
o is angular velocity; q is N s  m-2, the viscosity of the med~um; L is the length of the actin 
filament; and r is 5 nm, the radius of the actin filament (24). The dotted line represents the 
calculated rotational rates of the filaments with a constant torque value of 40 pN-nm. For 
comparison, the rotational rates of the y subunit in F, are plotted (open circles). For the assay, 5 
mM Mg ATP was used. 

Fig. 3. Effect of ventu- A B 
ricidin on the rotation ....................................................................................... 
of an actin filament ..!?SF?.% 
connected t o  the c 6 
subunit of FoFl. Rota- 
tiona[ movements of 
filaments were fol- ... 

lowed on a subsecond ...... - 0 

scale. During video re- ..I. .(!?) ..................................................................... 8 2 
cording for the rotat- ............................................................................... .... a LT ing filaments, 20 ................................................................................. 

of the reaction mix- r" ....................................... / 0.3 s I round 0 0 7 70 70 ture containing 70 ,,M 

venturicidin (provided ~etore I U  Alter c (FoFI) 
by R. H. Fillingame) Venturiddin addition 

Y (F1) 
Venturicidin WM) 

was slowly (-5 kVs) 
introduced into the flow cell, and the movement was further recorded. The approximate volume of 
the flow cell was 10 kl. (A) Typical examples of the rotations before (left trace) and 2 s after (right 
trace) the addition of venturicidin. Upper traces indicate the filament (2.0 pm) connected to  the 
c subunit [c(FoFl)], and lower traces indicate the filament (1.6 pm) connected t o  the y subunit 
[-y(F,)]. Red lines show records obtained at a resolution of 33 ms; black lines show the same records 
passed through a nonlinear median filter of rank 5 (133-ms width) (25). Arrowheads (blue) pointing 
down and up indicate the beginning and end of pauses, respectively. (B) Increase of pauses after 
venturicidin addition. The rotations of five actin filaments (-1.5 to  -2.0 km) connected to  the 
FoFl c or F, y subunit were recorded, and numbers of pauses (per rotation, or round) after and 
before the venturicidin addition were counted. Ratios of the event numbers (pauses after 
venturicidin/pauses before venturicidin) and final venturicidin concentrations (0.7, and 70 kM) are 
shown. Error bars indicate standard deviations. 
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(E. coli). which is essential for proton transport 
(20). 

Om results indicate that the c subunit oli- 
gomer rotates with the y subunit during ATP 
hydrolysis by F,F,. In the reverse direction. 
proton transport should dive rotation of the c 
subunit oligomer, which ill tun1 would drive 
rotation of the y subunit to promote ATP syn- 
thesis. Our study demonstrates that the mechan- 
ical rotation of the y and c subunit complex is 
an essential feature for the energy coupling 
between proton transport through the F, sector 
and ATP hydrolysis or synthesis in the F, sec- 
tor. Analysis of a series of E. coli F,F, mutants 
(24, based on the progress of single molecule 
biomechanics (22). will contribute to the further 
understanding of the motor mechanism. 
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Visualization of Dioxygen 
Bound to Copper During 

Enzvme Catalvsis 
C. M. Wilmot,' J. Hajdu,' M. J. Mcpherson,' P. F. Knowles,' 

S. E. V. Phillips' 

X-ray crystal structures of three species related t o  the oxidative half of the 
reaction of the copper-containing quinoprotein amine oxidase from Escherichia 
coli have been determined. Crystals were freeze-trapped either anaerobically 
or aerobically after exposure t o  substrate, and structures were determined t o  
resolutions between 2.1 and 2.4 angstroms. The oxidation state of the,quinone 
cofactor was investigated by single-crystal spectrophotometry. The structures 
reveal the site of bound dioxygen and the proton transfer pathways involved 
in oxygen reduction. The quinone cofactor is regenerated from the iminoqui- 
none intermediate by hydrolysis involving Asp383, the catalytic base in  the 
reductive half-reaction. Product aldehyde inhibits the hydrolysis, making re- 
lease of product the rate-determining step of the reaction in the crystal. 

Oxygen is a ubiquitous electron acceptor in poorly understood. To address this, we have 
aerobic biological systems. The mechanisms of used flash-freezing techniques on catalytically 
oxygen activation by redox enzymes, including competent ciystals of ECAO to trap intelmedi- 
Esclzericlzin coli amine oxidase (ECAO), are ates in the oxidative half-reaction, and solve the 
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