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Contraction and relaxation of smooth muscle are regulated by myosin light- 
chain kinase and myosin phosphatase through phosphorylation and dephos- 
phorylation of myosin light chains. Cyclic guanosine monophosphate (cGMP)- 
dependent protein kinase la (cGKla) mediates physiologic relaxation of vascular 
smooth muscle in response to nitric oxide and cGMP. It is shown here that cGKla 
is targeted to the smooth muscle cell contractile apparatus by a leucine zipper 
interaction with the myosin-binding subunit (MBS) of myosin phosphatase. 
Uncoupling of the cGKla-MBS interaction prevents cGMP-dependent dephos- 
phorylation of myosin light chain, demonstrating that this interaction is es- 
sential to the regulation of vascular smooth muscle cell tone. 

Smooth m~iscle cells are critical to the normal 
physiology of many of the organs of the body. 
Smooth muscle cells are the principal compo- 
nent of blood vessels, where they regulate vas- 
c~ilar tone and play a central role in the patho- 
genesis of atherosclerosis and vasc~ilar diseases. 
Smooth m~iscle contraction and relaxation are 
regulated by the iise and fall of intracellular 
calcium levels (I, 2). .4n increase in intracellu- 
lar calcium causes smooth muscle cell contrac- 
tion by activation of the calciunv'calmodulin- 
dependent myosin light-chain kinase, which 
phosphorylates myosin light chain and activates 

the contractile myosin adenosine triphosphatase 
(ATPase). A decrease in intracellular calcium 
causes inactivation of niyosin light-chain ki- 
nase, accompai~ied by dephosphoi-ylation of 
myosin light chain by the myosin light-chain 
phosphatase, PPlM (2). PPlM is a trimer com- 
prising a 130-kD regulatoi-y myosin-binding 
subunit (MBS), a 37-kD catalytic subunit 
(PPlc), and a 20-16) protein of uncertain func- 
tion (M20) (3). 

In sl~looth muscle, the sensitivity of the 
contractile apparatus to calcium is modulated 
by intracellular messengers that alter PPlM 
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activity. Contractile agonists acting through sig- 
naling molecules such as protein kinase C, ar- 
achidonic acid, and rho kinase increase the 
sensitivity of vascular smooth muscle cells to 
contractile stimuli by inhibiting PPlM (4). 
Conversely, endogenous nitric oxide and relat- 
ed nitrovasodilators regulate blood pressure by 
activation of soluble guanylate cyclase, eleva- 
tion of cGMP, and activation of cGMP-depen- 
dent protein kinase Ia (cGKIa), which is re- 
quired for nitric oxide-mediated vasodilatation 
and leads to vasorelaxation by an unknonn 
mechanism (5). Cyclic GMP-mediated vascu- 
lar smooth muscle cell relaxation is character- 
ized by both a reduction of intracellular calcium 
concentration and by activation of PP 1 M, 
which red~ices the sensitivity of the contractile 
apparatus to intracellular calcium (5, 6). The 
mechanism by which cGMP increases PPlM 
activity and myosin light-chain dephosphoryl- 
ation is unknown. 

Kinases and phosphatases are targeted to 
s~ibcellular locations by binding to specific tar- 
geting proteins that restrict the subcellular lo- 
cale of these signaling enzymes (7). Anchoring 
proteins, such as the A-kinase anchoring pro- 
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tein AKAP79 in mammals and STES in yeast, ces cerevisiae (9) confirmed the interaction 
colocalize signaling enzymes to a specific sub- of full-length cGKIa with the COOH-termi- 
cellular region and thereby integrate multiple nal 18 1 amino acids of MBS (Fig. 1 A), which 
components of a signaling pathway (8). An- includes a leucine zipper domain (amino ac- 
choring proteins have been identified and ids 1007 through 1028 of human MBS) (1 3). 
cloned recently for CAMP-dependent protein 
kinase, for protein kinase C, and for the serine- 
threonine phosphatase PP1 (7, 8). 

To identify potential cGKIa binding pro- 
teins, the full-length coding sequence of 
cGKIa was used in the yeast two-hybrid 
system to screen 2.5 X 10, clones from a 
human activated T cell library (9-12). Clone 
AL9, which was found to transactivate both 
histidine and P-galactosidase reporters with 
cGKIa, proved upon sequencing to encode 
the COOH-terminal 18 1 amino acids of the 
MBS of myosin phosphatase (PPlM) (13). 
MBS is the 130-M) regulatory subunit of 
PPlM that confers the specificity of PP1 for 
myosin light chain and is the site of PPlM 
regulation by rho kinase (3, 4). Cotransfor- 
mation of AL9 and cGKIa into Saccharomy- 

Yeast two-hybrid protein interaction as- 
says with truncation mutants of cGKIa were 
used next to define the cGKIa domain that 
interacts with MBS (14). Amino-terminal 
cGKIa fragments of 446 (cGKIa,-,,), 256 
(cGKI~,,~Q), and 59 (cGKIa,,,) ammo ac- 
ids all interacted with AL9 in these studies 
(Fig. 1B). In contrast, an internal fragment of 
cGKIa, including amino acids 68 through 
446, (cGKIa,,-,,) and a cGKIa clone in 
which the first 67 amino acids were deleted 
(cGKIa,,-,,,) both failed to associate with 
AL9 (Fig. 1B). The peptide cGKIa,,, in- 
cludes a leucine/isoleucine zipper domain 
(15). These experiments show that the 
COOH-terminus of MBS interacts with the 
NH,-terminal regulatory region of cGKIa 
(Fig. 1E). 
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Fig. 1. Interaction of full-length and truncated cCKla with the myosin-binding subunit of PPlM 
in  yeast. (A) Yeast transformed with cCKla-CalDB or CalDB alone in  combination with 
AL9-CalAD or CalAD alone and plated on complete media (YPD) and media lacking histidine 
(Sc-HIS). Also shown is the P-galactosidase assay (LacZ) of yeast from the YPD plate. (B) Yeast 
transformed with AL9-CalAD in  combination with one of five cCKla-CalDB truncations and 
plated on complete media (YPD) and media lacking histidine (Sc-His). The P-galactosidase 
assay (LacZ) for the yeast colonies growing on the YPD plate is shown. (C) Summary of HIS and 
@-Gal reporter activation in yeast cotransformed with cCKla-GalDB truncations and AL9-CaLAD in (B). 
(D) Summary of site-directed mutagenesis experiments in which selected leucine and isoleucine 
residues in cCKlal,g were mutated to  either alanine (A) or proline (P) (20). The binding of the wild-type 
cCKla (cCKJ and the sitedirected mutants cCK,,,,, cCK , and cCK,, to  AL9, assayed by His 
and P-Gal reporter activation in yeast is shown on the right (8. +, strong binding; +/-, weak binding, 
and -, no binding; C, cCMP binding site; CD, catalytic domain. (E) Schematic-diagram showing binding 
of cCKla to  the MBS of PPIM. The NH2-terminal leucine-isoleucine zipper in cCKla interacts with the 
COOH-terminal MBS domain, which also contains a Leucine zipper. PPlM binds myosin light chain 
(MLC,,) through the NH2-terminal ankyrin repeat region of MBS (3). PPlM also contains the catalytic 
subunit of PP1 (PPlc) and a third subunit of uncertain significance at present (M2O). Other symbols are 
as indicated in (D). 

The interaction of cGKIa and MBS also 
was examined by GST-fusion protein bind- 
ing studies (16). GST-AL9, but not GST 
alone (negative control), bound cGK from 
human saphenous vein smooth muscle cell 
lysates (Fig. 2A). The 690-amino acid 
NH2-terminal half of MBS (MBS,-,,,) 
showed no interaction with cGK in similar 
experiments (17). Conversely, GST- 
cGKIa,,, also specifically bound MBS 
from human vascular smooth muscle cell 
lysates (Fig. 2B) (16). Mammalian tissues 
contain two additional cGK isoforms, 
cGKIP and cGKII, which share consider- 
able sequence homology to cGKIa(5), and 
contain leucine zippers in their NH2-termi- 
ni that differ substantially in primary se- 
quence. The cGK isoforms cGKIf3 and 
cGKII were tested for binding to MBS (5, 
16). Neither GST-cGKIf3 nor GST-cGKII 
bound MBS from vascular smooth muscle 
cell lysates (Fig. 2B), or interacted with 
MBS in the yeast two-hybrid assay (17), 
revealing that the interaction with MBS is 
specific to the Ia  isoform of cGK. The 
stoichiometry of the binding of cGKIa and 
MBS was explored using fluorescence 
spectroscopy (18). Binding of labeled 
cGKIa to GST-MBS was specific and sat- 
urable, with a K, of 62 nM. Linear trans- 
formation of the data (19) demonstrates 
that cGKIa, which exists as a dimer (5, 15), 
binds MBS in a 1 : 1 molar ratio, indicating 
that each dimer of cGKIa binds a dimer of 
MBS. 

Leucine and leucine-isoleucine zipper 
motifs are a helical heptad repeats known to 
mediate protein-protein interactions (15). The 

u - 
Fig. 2. Specific interaction between MBS and 
cCKla in human vascular smooth muscle cells. 
(A) Protein-protein interaction studies with hu- 
man saphenous vein smooth muscle cell lysates 
and the MBS fragment AL9. Lysates were incu- 
bated with glutathione agarose beads (lane I), 
CST beads (lane 2), or CST-MBS beads (lane 3) 
followed by SDS-PACE and immunoblotting 
with anti-cCK antibody (16). (B) Protein-pro- 
tein interaction studies with human saphenous 
vein smooth muscle cell lysates and peptides 
derived from cGK isoforms la, Ip, and II. Lysates 
were incubated with CST beads (lane I), CST- 
CCKI~,-,~ beads (lane 2), CST-cCKIP,,, beads 
(lane 3), and CSTcCKII,,,, beads (lane 4) (76) 
and immunoblotted for MBS (76). One of two 
similar experiments is shown. 
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w-terminus of cGKIa contains a leucine- 
isoleucine zipper between amino acids 12 and 
40 (5, 10, 15), and the COOH-terminus of 
MBS contains a leucine zipper from residues 
1007 through 1028 (3). Replacement of 
leucine residues with alanine, valine or pro- 
line has been shown in some proteins to 
abrogate leucine zipper-mediated binding 
(15). To determine whether the leucine-isole- 
ucine zipper in the NH2-terminus of cGKIa is 
essential for binding to MBS, we used site- 
directed mutagenesis to replace leucine or 
isoleucine residues of cGKIa (20). Three mu- 
tants of the leucine/isoleucine zipper of 
cGKIa were prepared: Leu1' and Ile19 to Ala 
(CGK,,,~,); Leuz6 to Pro (cGK,,,); and 
Ile33 and Leu4' to Ala (cGK,,,) (Fig. ID). 
Binding to MBS was tested using both GST- 
fusion protein (Fig. 2) and yeast two-hybrid 
interaction assays. None of the leucine zipper 
mutants interacted with MBS h m  vascular 
smooth muscle cell lysates in GST-fusion pro- 
tein studies (1 7). In yeast two-hybrid interac- 
tion assays, cGK,,,, showed some associa- 
tion with MBS, whereas c G h l a  and 
C G L ,  both failed to interact with MBS, 
confirming the data of the GST-fusion protein 
studies (Fig. ID). These experiments indicate 
that the leucine-isoleucine zipper motif of 
cGKIa specifically mediates the interaction 
with the leucine zipper-containing COOH-ter- 
mind domain of MBS. 

Immunoprecipitation methods also were 
employed to detect whether cGKIa and MBS 
interact in vascular smooth muscle cells. Im- 
munoprecipitates of cGKIa from human vas- 
cular smooth muscle cell lysates contained 
MBS (Fig. 3A) (21). Similarly, when MBS 
was immunoprecipitated, cGKIa was detect- 
ed in the immunopellet (21) (Fig. 3B). PPlM 
phosphatase activity in the cGKIa imrnuno- 
precipitates also was measured against two 
known PPlM substrates, myosin light chain 
and phosphorylase a (22). Phosphatase activ- 
ity was present in the cGKIa immunopellets 
and was only minimally inhibited by 2 nM 
okadaic acid (12 + lo%, P = NS, n = 3), but 
was significantly inhibited by 1 FM okadaic 
acid (79 + 2%, P < 0.001, n = 3) (Fig. 3C), 
characteristic of the effects of this inhibitor 
on PP1 phosphatases (23). These experiments 
demonstrate that cGKIa is complexed with 
fully functional PPlM phosphatase activity. 

To examine potential cGKIa substrates in 
the cGKIa-PP1M complex, phosphorylation 
studies also were performed. Addition of 
cGMP and cGKIa (final concentration, 350 
nM) to the anti-MBS immunopellets in the 
presence of [Y-,~P]ATP led to markedly in- 
creased phosphorylation of the MBS itself 
(Fig. 3D) (24, 25). Four other proteins of 72, 
57,42, and approximately 20 to 26 kD in size 
also were phosphorylated to lesser degrees in 
these studies (Fig. 3D). The significance of 
these smaller phosphoproteins is currently 
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under investigation. Since the NHz-terminal 
domain of cGKIa mediates binding to MBS 
(Figs. L and 2), and MBS is a substrate of 
cGKIa, we also examined whether the NH2- 
terminal domain of cGKIa is important to 
target the kinase to its substrate, MBS. Pro- 
teolysis of cGKIa with trypsin removes the 
first 77 amino acids of the enzyme, including 
both the leucine-isoleucine zipper and auto- 
inhibitory domains, and results in a constitu- 
tively active cGKIa (cGK-CA) (26). In phos- 
phorylation assays (24), cGK-CA or full- 
length cGKIa were incubated with either the 
MBS immunopellet or histone F2b, a sub- 
strate for several protein kinases. Phosphoryl- 
ation of MBS by cGK-CA was substantially 
reduced in comparison to phosphorylation of 

MBS by cGKIa (76 + 3%, P C 0.003, n = 
3). However, cGK-CA and cGKIa both phos- 
phorylated histone F2b to a similar extent 
(Fig. 3E). These data further indicate that 
MBS is a substrate for cGKIa, q d  that the 
NH2-terminal leucine-isoleucine zipper do- 
main of cGKIa is important in targeting 
cGKIa for phosphorylation of MBS. 

Double-labeling immunofluorescence and 
confocal microscopy were used to explore the 
subcellular localization of cGKIa and MBS 
in human vascular smooth muscle cells (Fig. 
4) (27). cGKIa and MBS colocalized consis- 
tently to two regions: a circumferential ring 
adjacent to the plasma membrane (Fig. 4, A 
through C) and to actin-myosin stress fibers 
in the vascular smooth muscle cells (Fig. 4, D 

Fig. 3. Coimmunoprecipi- 6 D Y U  
tation of MBS, PP1 phos- 
phatase activity, and cCK. 
(A) Lysates from cultured 

8 8 
saphenous vein smooth 
muscle cells were immu- 11 
noprecipitated with either I nonimmune IgC, or anti- 97 
cCKla antibodies, then 
resolved on SDS-PACE 
and immunoblotted for 
MBS (arrow) (27). (B) ~ y -  IC 
sates from saphenous vein 
smooth muscle cells were 
immunoprecipitated with 
either nonimmune IgC or 
anti-MBS antibodies, re- 
solved by SDS-PAGE, and 
immunoblotted for cCK 
(arrow) (27). (C) Associa- 
tion of PP1 phosphatase . 
activity with cCKla. cCKla 
was immunoprecipitated OA - + + +  
and phosphatase activity - 
was assayed in the immu- 

-- 
nopellet (22). NI, nonimmune IgC; cCK, anti-cCKla immunopellets. OA = okadaic acid, 2 nM (+) 
or 1 p M  (+ +; 79 2 2% decrease, * = P < 0.001 versus untreated). One of two similar experiments 
is shown. (D) Phosphorylation of proteins in the MBS immunopellet by cCKla. Kinase assays (24) 
demonstrate marked phosphorylation by cCKla of MBS, as well as four other proteins to lesser 
degrees (72,57,42, and 20 to 26 kD) (arrowheads). (E) In vitro MBS phosphorylation assays without 
cCK (Ctl), or with constitutively active cCKla (cCK-CA) (26) or full-length cCKla (cCK-FL) (24). 
Control phosphorylations with the general cCKla substrate histone F2b are shown in the lower 
panel (24). 

Fig. 4. lntracellular distri- 
bution and colocalization 
of cCK and MBS in vascu- 
lar smooth muscle cells. 
[(A) through (C)] Vascular 
smooth muscle cells im- 
munostained (27) with.ei- 
ther (A) anti-cCKla or (B) 
anti-MBS, (C) and the 
two images superim- 
posed to reveal colocal- 
ization of MBS and 

ized prior to kxation to reveal actin-myosin stress fibers (27) and immunostained with (D) 
anti-cCKla, (E) anti-MBS, and (F) the two images superimposed demonstrating colocalization 
of MBS and cCKla on cellular stress fibers. Bar, 20 pm. 
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through F), where myosin light-chain kinase 
and PP1M already are known to colocalize 
and regulate contraction (2). Colocalization 
of MBS and cGKIa near the plasma mem­
brane demonstrates that MBS is found in a 
site in addition to stress fibers in vascular 
smooth muscle cells and suggests that this 
may position cGKIa nearby membrane pro­
tein substrates, such as G-protein coupled 
receptors, which have been shown recently to 
be regulated by cGKIa phosphorylation (28). 
The localization of cGKIa to stress fibers 
(Fig. 4, D and F) has not been appreciated 
previously, and shows further that cGKIa is 
targeted within the cell to a site where it may 
catalyze phosphorylation of MBS and other 
proteins important to the regulation of vascu­
lar smooth muscle cell relaxation. 

In vascular smooth muscle cells, phospho­
rylation of the regulatory myosin light chain 
is the key determinant of actomyosin ATPase 
activity and smooth muscle cell contraction 
(2). Because MBS targets cGKIa to the 
smooth muscle cell contractile apparatus, and 
activation of cGKIa increases PP1M activity 
(<5), the cGKIa-MBS interaction may play an 
important role in the regulation of smooth 
muscle cell contractile state by NO and 
cGMP. The extent of agonist-stimulated my­
osin light-chain phosphorylation was quanti­
fied in intact vascular smooth muscle cells 
transfected with either vector alone or a plas-
mid expressing the cGKIa leucine/isoleucine 
zipper domain (cGK1_59), to examine the ef­
fects of disrupting the cGKIa-MBS interac­
tion on cGMP-mediated inhibition of myosin 

Vector Control -f- + - j - — — — 
CGKL^ _ . . + + + 
U46619 - + + _ + _ | _ 

8-Br-cGMP _ _ + - - + 

Fig. 5. Effect of cGMP on myosin light-chain 
phosphorylation in native vascular smooth 
muscle cells and following disruption of the 
cGK-MBS interaction: Rat aortic smooth muscle 
cells were transfected with either vector alone 
or cDNA for the leucine/isoleucine zipper pep­
tide from cGK (cGK^^). Cells were stimulated 
with the thromboxane analog U46619 in the 
absence or presence of 8-Br-cGMP pretreat-
ment and myosin light-chain phosphorylation 
state was quantified (29). Data represent the 
means ± standard error of three separate ex­
periments in duplicate. The thromboxane ana­
log U46619 increases myosin light-chain phos­
phorylation from 10 to 68% in both vector 
control and CGK1_59-transfected cells. Overex-
pression of cGK1_59 significantly impairs cGMP 
inhibition of myosin light-chain phosphoryl­
ation (from 79 to 35% inhibition, *P = 0.001). 

light chain phosphorylation (29). The throm­
boxane analog U46619 caused an increase in 
myosin light-chain phoshorylation from 10 ± 
2% to 68 ± 2% (P < 0.001, n = 3) in both 
vector alone and cGK1_59 transfected vascu­
lar smooth muscle cells (Fig. 5). In vector-
alone transfected vascular smooth muscle 
cells, 8-Br-cGMP inhibited U46619 mediated 
myosin light-chain phosphorylation by 79 ± 
17% (P < 0.001, n = 3) (Fig. 5). However, 
expression of cGK1_59 significantly dimin­
ished the ability of 8-Br-cGMP to inhibit my­
osin light-chain phosphorylation following 
U46619 stimulation (from 79% to 35% inhibi­
tion, P = 0.001, n = 3). Thus, disruption of the 
cGKIa-MBS interaction prevents cGMP-medi-
ated dephosphorylation of myosin light chain, 
the central determinant of contractile state in 
intact vascular smooth muscle cells. 

These studies show for the first time that 
cGKIa binds specifically to the MBS of the 
phosphatase PP1M via a leucine zipper inter­
action, which targets cGKIa to stress fibers to 
mediate smooth muscle cell relaxation and 
vasodilation in response to rises in intracel­
lular cGMP. In addition, these studies dem­
onstrate MBS and several other proteins are 
substrates of cGKIa, and disruption of the 
cGKIa-MBS interaction impairs cGMP-me-
diated dephosphorylation of myosin light 
chain, the critical determinant of smooth 
muscle cell contractile state. MBS, which 
contains NH2-terminal ankyrin repeats in ad­
dition to a COOH-terminal leucine zipper, is 
also complexed with the 37-kD catalytic sub-
unit of PP1M, the 20-kD subunit of the phos­
phatase (M20), the regulatory MLC, and 
RhoA/Rho kinase (3, 4). Thus, MBS assem­
bles a multienzyme complex, tethering a 
phosphatase and at least two distinct kinases 
with counter-regulatory effects on PP1M ac­
tivity to the contractile apparatus to regulate 
smooth muscle contraction and relaxation. 
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