
Increased Cortical Oxidative 
Metabolism Due to Sensorv 

Stimulation: Implications for 
Functional Brain Imaging 

To detect the oxygen concentration changes, 
a e  fist  mected anesthetized cats with the ox- 
ygen-sensitive phosphorescent probe intrave- 
nously at 30 mg'kg of body weight (18). The 
exposed cortex was implanted with a cranial 
window and illuminated by brief flashes at 10 
Hz (width -2 ps at half-height) using standard 
epi-illumination via the objective lens of the 
macroscope (19). The emitted phosphorescence 
was detected by a photonl~lltiplier (Fig. 1A). 

Ivo Vanzetta and Amiram Grinvald The known dsop in oxygen concentration dur- 
ing barbihrate anesthesia (20) causes a consid- 

Modern functional brain mapping relies on interactions of neuronal electrical erably longer lifetime (Fig. 1B). This result 
activity with the cortical microcirculation. The existence of a highly localized, indicates that the measurement can be done in 
stimulus-evoked initial deoxygenation has remained a controversy. Here, the the living brain. Remarkably, the small changes 
activity-dependent oxygen tension changes in the microcirculation were mea- in decay time in response to sensory stim~~lation 
sured directly, using oxygen-dependent phosphorescence quenching of an ex- were reliably detected as well (Fig. 1C). The 
ogenous indicator. The first event after sensory stimulation was an increase in emergent order in the set of decay cutves, each 
oxygen consumption, followed by an increase in blood flow. Because oxygen obtained at a different time with respect to the 
consumption and neuronal activity are colocalized but the delayed blood flow T isual stlm~~lus, pro1 es that changes in the 
is not, functional magnetic resonance imaging focused on this initial phase will phosphorescence decay times can clearly be 
yield much higher spatial resolution, ultimately enabling the noninvasive vis- detected m response to the sensory stimulation 
ualization of fundamental processing modules in the human brain. The phosphorescence decay time becomes 

longer 1.4 s after stimulus onset (Fig. ID), 
Understanding of human cognitive brain h c -  only a minimal increase in oxygen consuinp- which suggests that after sensory activation of 
tion has greatly improved with the emergence tion (4, 13). the cortex, there is a rapid decrease in the 
of noninvasive methodologies for high-resolu- This apparent contradiction raises the microvascular free oxygen concentration. Sev- 
tion functional neuroimaging, such as positron question of what is actually being measured eral alternative interpretations for the obsen-ed 
emission tomography (PET) and functional by the BOLD effect or by optical imaging change in decay tiine, ct-itically discussed in 
magnetic resonance imaging (fMRI). These spectroscopy. I\/Iayhew and colleagues (12) previous in vivo and in vitro applications of this 
techniques have allowed the rapid identification have argued that a problem exists with the technique (14, 17), have been ruled out here 
of functionally distinct cortical areas (I, 2). interpretation of previous imaging spectros- (21). Therefore, we conclude that the slower 
Moreover, the study of the layout of individual copy data ( 4 ,  claiming that the linear model decay cuwe obser~ed after 1.4 s was indeed due 
cortical modules (3) within a given brain area used was oversimplified and may have intro- to the activity-induced decrease in the inicro- 
and their geometrical relationships (4) has be- duced large errors in the calculated deoxyhe- vascular oxygen tension, resulting from an in- 
come feasible using the much higher spatial moglobin time course. We share the opinion creased oxygen consumption. 
resolution of optical imaging based on inbinsic that the selected model, as well as assump- To obtain the time course of relative 
signals. These three methods monitor regional tions about some of its parameters, are indeed changes in oxygen concentration, we used 
changes in cerebral blood flow and blood oxy- critical (14). In addition, our imaging spec- signal averaging and calculated the decay 
genation level, relying on the coupling between troscopy measurements had a time resolution tiines for evei-y flash (22). The results (Fig. 
local electrical activity and cerebral inicrocircu- of 500 ms, thus providing timing precision of 2A) show a biphasic curve: Immediately after 
lation (2, 5, 4). -1 s. This time resolution is not sufficient to the stimulus onset, the phosphorescence de- 

Previous optical imaging experiments monitor the sequence of very early changes in cay time becomes longer, and then it begins 
have argued that sensory-evoked electrical oxy- or deoxyheinoglobin concentration and to decline and undershoots after -2.5 s. As a 
activity gives rise to a highly localized initial blood volume (8 )  and their temporal relation- control, we measured the changes in the 
increase in oxygen consumption. This leads ship to blood flow changes (7). Therefore, to phosphorescence decay tiine in the absence 
to an increase in the concentration of deoxy- resolve this controversy, we decided to by- of a visual stimulus. The flat line thus ob- 
hemoglobin, followed by a deoxyhemoglobin pass imaging spectroscopy by measuring mi- tained (Fig. 2A, thin line) underscores the 
decrease caused by a delayed blood flow crovascular oxygen concentration changes di- reliability of these decay time measurements. 
increase, which is not well regulated at the rectly, at a time resolution improved by a The kinetics of the oxygen concentration 
level of cortical functional domains (7). This factor of 5. changes can be derived from these decay 
interpretation has been further suppoi-ted by To this end, a e measured the phosphores- times using the Stern-Voliner equation 
optical imaging spectroscopy (8) The initial cence decay of Oxyphor R2 [Pd-meso-tetra(4- 
increase in deoxyhernoglobin concentration, carboxyphenyl) poiphyim dendniner] in the ce- 7, T = 1 l K',7$02 (1 

referred to as the initial dip, mas recently rebral inicroclrculation Oxyphor R2 is an ox- wheie 7 and T, a e  the measured and zero- 
confirmed by high-field fMRI measurements ygen tension-sensitive phosphorescent probe oxygen phosphorescence lifetimes, PO, is the 
at 4 to 9.4 T (9, 10). However, the large that, once injected intravenously, associates oxygen tension, and Kq is the secolidlorder rate 
majority of low-field BOLD (blood oxygen- with alb~unin and thus does not leak out of the constant for quenching of phosphorescence. 
ation level-dependent) fMRI measurements, microcirculation. This method, introduced by Figure 2B shows the time course of the 
as well as other methodologies, have not Wilson and colleagues (15-1 7), is based on the activity-dependent oxygen tension changes 
detected the initial dip (11, 12) or have found fact that phosphorescence can be quenched by thus obtained (23). The sinall standard devi- 

molecular oxygen Thus, phosphorescence life- ations indicate that the changes in oxygen . - A A - . - 
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~ i ~ h ~ ~  ~~~i~ ~ ~ ~ ~ ~ i ~ ~ ~ ,  weizmann institute of sci- changes in the oxygen concentration in the reliably detected by this method. The oxygen 
ence, Rehovot 76100, lsraeL probe's immediate environment. concentration within the inicrovasculature 
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starts to decline almost as soon as cortical 
electrical activity is evoked by the stimulus. 
It reaches its minimum after - 1.5 s and then 
starts to increase quickly, crossing the base- 
line after -2.5 s. The delayed free oxygen 
increase peaks after 6 s and then begins to 
decline again. To prove that the onset of the 
early deoxygenation precedes any blood vol- 
ume changes, we measured blood volume 
changes simultaneously with the phosphores- 
cence decay times. The onset of blood vol- 
ume changes is delayed by -0.5 s with re- 
spect to the onset of changes in oxygen ten- 
sion (Fig. 2B, inset). This delay rules out the 
existence of a fast, veinlvenule-specific, blood 
volume increase similar to that predicted by the 
balloon model at this early time (24) that might 
otherwise provide an alternative explanation for 
the observed deoxygenation (21). These results 
suggest once again that the first fast event is 
increased oxygen consumption by the electri- 
cally active neurons, followed by a large hyper- 
oxygenation, most probably due to the delayed 
blood flow increase. The ratio of negative to 
positive peak is -4.5 (Fig. 2B), which indicates 
a large mismatch between oxygen consumption 
and supply. Having seen similar results in seven 
independent experiments performed on four 
cats (Fig. 3C), we conclude that in the anesthe 
tized cat, the first event after a sensory stimulus 
is a decrease in oxygen saturation due to an 
increase in oxygen consumption, caused in turn 
by an increase in oxidative metabolism in elec- 
trically active neurons or adjacent glia 

We wondered how the time course of activ- 
ity-dependent oxygen concentration changes 

obtained by this direct measurement relates to 
the indirect measurements obtained by imaging 
spectroscopy and blood flow measurements (7, 
8). Under some assumptions (25), these chang- 
es in the concentration of h e  oxygen in the 
microvascular system can be calculated h m  
the relative changes in the concentrations of 
oxyhemoglobin and deoxyhemoglobin as fol- 
lows: 

NO21 = A[Oxyl 

- A[Deox~l[ox~ld[Deox~l~ (2) 
where [Chy], and [Deoxy], are the oxy- and 
de~x~hemogiobin concen&tions at rest. We 
analyzed the imaging spectroscopy data at a 
wavelength range of 530 to 650 nm. The kinet- 
ics of activity-dependent changes in the concen- 
trations of oxyhernoglobin and deoxyhemoglo- 
bin thus obtained are shown in Fig. 3A. From 
these results, we estimated the time course of 
oxygen concentration changes with the use of 
Eq. 2. Remarkably, the result (Fig. 3B) is qual- 
itatively similar to the time course obtained 
with our direct measurements (Fig. 3C): Both 
methods yielded an initial decrease in oxygen, 
followed by a large hyperoxygenation. Thus, 
the existence of the initial dip is supported by 
these two independent measurements. 

The present direct measurements of oxy- 
gen tension in the cortical microvasculature 
indicate that the initial dip reflects a very fast 
increase in oxidative metabolism in response 
to sensory stimulation. These results are con- 
sistent with the fast decrease in NADH (re- 
duced form of nicotinamide adenine dinucle- 
otide) fluorescence reported in slices and in 

vivo after electrical stimulation (26). Recent 
PET measurements of the human brain have 
both supported (27) and refuted (13) this 
initial increase in oxidative metabolism, as 
have many previous fMRI measurements 
(11). The present results, rather than reflect- 
ing a species difference between feline and 
primate or the state of anesthesia (14), are 
very relevant to fMRI or PET imaging of the 
human brain. Indeed, our conclusions have 
recently been confirmed by 4.7 T fMRI mea- 
surements on monkeys (10) and by 4 T, 9.4 T, 
and 4.7 T fMRI measurements on humans 
and on anesthetized cats (9). It has been 
argued, on theoretical (24) and experimental 
(28) bases, that the amplitude of the initial dip 
seen with fMRI depends on the second pow- 
er of the field strength. Furthermore, Logo- 
thetis has recently shown that the initial dip 
detected with high-field fMRI in the paren- 
chyma is not detected in the large vessels, 
whereas the late BOLD component is detect- 
ed in both compartments [figure 5 in (lo)]. 
Why the initial dip has not been observed by 
most low-field BOLD fMRI measurements is 
an important question (28). It seems that low- 
field BOLD measurements are not sufficient- 
ly sensitive to changes in deoxyhemoglobin 
concentration in the cortical capillaries. The 
spatial resolution of such fMRI measure- 
ments is therefore not quite clear. Robust 
ocular dominance columns have been imaged 
by fMRI only by relying on either differen- 
tial imaging or signal amplitude (29), yet this 
is not always practical. There is a better 
solution: It has been shown that the delayed 

Fig. 1. In vivo oxygen tension measurement by analysis of phosphores- 
cence decay kinetics. (A) The setup. Drifting gratings are presented in 
front of the cat's eyes. Brief pulses are flashed onto the exposed cortex 
(78) through an interference filter (peak transmission 510 nm; bandwidth 
10 nm) and are reflected by a dichroic mirror (cutoff at 590 nm) onto a 
selected region of 2 mm by 2 mm in area 18, devoid of arteries or veins 
with a diameter of >80 t o  100 Fm. Flashing rate, 10 Hz. Emitted 
phosphorescence is collected by a photomultiplier after filtering the light 
by a 610-nm long-pass filter. The photomultiplier current is used to  
measure the decay kinetics of the phosphorescence. (B) The flash (black 
line) and two phosphorescence decay curves. The faster one (red) was 
recorded when the animal was lightly anesthetized; the slower one 

(blue), showingreduced blood oxygenation, was recorded after injecting 
additional anesthetics (until the electroencephalogram was nearly flat). 
(C) Decay curves (average of 96 trials) obtained before (dark blue), during 
(light blue-green), and after (yellow-red) the stimulus. Inset: Detail of the 
decay curves. (D) Expanded display of each of the three phases seen in 
(C). Dark blue curves: several prestimulus "baseline" deca curves show- 
ing the baseline stability. Decay curves above this area i r e e n  shading) 
imply less oxygen, and those below (pink shading) imply more oxygen. 
The blue curve is a slower decay curve recorded 1.4 s after stimulus 
onset, showing a decreased oxygen concentration. The red curve was 
taken 6 s after stimulus onset. It is faster than the baseline decay, 
showing the delayed hyperoxygenation phase. 
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blood flow and blood volume changes are not it appears that a much better spatial resolu- 
colocalized with activated cortical columns tion-approaching that obtained with optical 
(7, 8). Here, we show that the initial dip is a imaging-will be achieved using high-field 
reflection of fast changes in oxidative metab- fMRI measurements during the initial dip 
olism Because changes in oxidative metabo- period. Such a resolution is required to visu- 
lism and in electrical activity are colocalized, alize fundamental processing modules per- 

Fig. 2. Activity-dependent phosphorescence decay time and oxygen tension in the cortical 
microcirculation. Each trial consisted of 95 decay curves, collected every 0.1 s before, during and 
after the visual stimulus. The decay constants were obtained by monoexponential fitting (22) at the 
time range of 100 to  500 p after the flash (76). In seven independent experiments on four cats, 
we obtained (7) = 181 p, a(,) = 15 p. (A) Thick line: decay time constants of the phosphores- 
cence, shown in Fig. lC, plotted as a function of time with respect t o  stimulus onset. Thin line: 
control decay time constants for the decay curves obtained for 9.5 s with same procedure, but 
without stimulus. Shaded area indicates stimulus time in all panels. (8) Oxygen tension .as 
calculated by Eq. 1 from the thick curve in (A). Error bars denote 1 standard deviation of the mean 
obtained from six independent groups of 16 trials each. Inset: Onset of the activity-dependent 
blood volume increase is delayed relative to  the fast decrease in oxygen concentration. Blood 
volume changes (thick trace) were measured with optical imaging of the;hanges in reflected Light 
at an isosbestic waveleneth (570 nml. sensitive primarilv to  blood volume changes. This measure- 
ment was performed s i~u l&neous l~~wi th  the phosph&escence measurement;(thin trace) from 
precisely the same cortical area, devoid of any large blood vessels. These two curves were 
normalized t o  their peak amplitudes (100%; not shown in the inset) occurring after 6 s in both 
cases. 

3 6 
Time a!4~ shn.onset (s) 

-1.5 0 3 6 
Tm aiter stim.onbet (s) 

Fig. 3. Calculation of the time course of changes in oxygen tension from imaging spectroscopy. (A) 
Time course of activity-dependent changes i n  oxyhemoglobin (red) and deoxyhemoglobin (blue) 
concentration obtained with imaging spectroscopy. Curves were normalized for easier comparison 
of timing relations. The inset shows the observed curves without normalization. Arrows: stimulus 
onset in all panels. (8) Activity-dependent changes in oxygen tension estimated from imaging 
spectroscopy. See text and (25) (n = 8; error bars: SD of the mean). (C) Oxygen tension observed 
with phosphorescence; means and SD are from seven independent experiments on four cats. The 
timing of the deoxygenation phase peak measured by the two methods was similar but not 
identical, presumably because of the approximations used in the analysis of imaging spectroscopy 
(74, 25), its low time resolution, and the variability observed in different experiments. 
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forming higher cognitive functions in the hu- 
man brain. 

Note added in prooj The recent visualiza- 
tion of the cat orientation columns by Kim et 
al. (9) supports this conclusion. 
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Transmission of Chronic 
Nociception by Spinal Neurons 

Expressing the Substance P 
Receptor 
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Substance P receptor (SPR)-expressing spinal neurons were ablated with the 
selective cytotoxin substance P-saporin. Loss of these neurons resulted in a 
reduction bf thermal hyperalgesia and mechanical allodynia associated with 
persistent neuropathic and inflammatory pain states. This loss appeared to be 
permanent. Responses to  mildly painful stimuli and morphine analgesia were 
unaffected by this treatment. These results identify a target for treating per- 
sistent pain and suggest that the small population of SPR-expressing neurons 
in the dorsal horn of the spinal cord plays a pivotal role in the generation and 
maintenance of chronic neuropathic and inflammatory pain. 

Chronic pain conditions are caused by ongo- 
ing disease states or tissue damage that result 
in sensitization of primary afferent and spinal 
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cord neurons. This sensitization results in an 
increased sensitivity to both noxious (hyper- 
algesia) and non-noxious (allodynia) stimuli 
that is frequently difficult to treat with current 
pharmacological or surgical approaches (1).  

Spinothalamic (STT) and spinoparabra- 
chial (SPB) neurons are involved in the as- 
cending conduction of acute noxious stimuli. 
Sensitization of these neurons results in hy- 
peralgesia (2). Although SPR-expressing 

"To w h o m  correspondence should be addressed. E- neurons represent less than 5% of the total 
mail: manty001@maroon.tc.umn.edu neurons in the dorsal horn of the spinal cord 
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