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have multiple modes of regulation, including 
temporal control of expression (like PGC-1) 
and regulation of inherent activity through 
transactivation factor docking and signal 
transduction systems. 
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Control of messenger RNA (mRNA) stability serves as an important mechanism 
for regulating gene expression. Analysis of Arabidopsis mutants that overac- 
cumulate soluble methionine (Met) revealed that the gene for cystathionine 
y-synthase (CGS), the key enzyme in Met biosynthesis, is regulated at the level 
of mRNA stability. Transfection experiments wi th  wild-type and mutant forms 
of the CGS gene suggest that an amino acid sequence encoded by the first exon 
of CGS acts in cis t o  destabilize its own mRNA in a process that is activated 
by Met or one of its metabolites. 

Genetic studies of metabolic pathways in bac- 
teria and yeast have revealed important regula- 
toly mechanisms. For example, studies of ami- 
no acid biosynthesis operons in bacteria led to 
an understanding of mRNA attenuation (I), and 
the histidine biosynthesis pathway of yeast led 
to an understanding of the complex interplay 
between general and pathway-specific controls 
(2). With the exception of hyptophan biosyn- 
thesis in Arabidopsis (3), genetic methods have 
not been extensively used to analyze amino 
acid biosynthesis in plants. To study the molec- 
ular mechanisms for regulation of methionine 
biosynthesis in plants, we used Arabidopsis 
mutants, termed nztol, that overaccumulate sol- 
uble Met (4). 

Met, a sulfur-containing amino acid, func- 
tions not only as a protein component but also 
as a precursor of S-adenosylmethionine, the 
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primary methyl donor in many transmethyl- 
ation reactions and, in plants, a precursor of 
the phytohonnone ethylene (5). Met is an 
essential dietary amino acid for mammals. 
Studies with the aquatic plant Lemna have 
shown that the cellular concentration of sol- 
uble Met remains unchanged over a 3000- 
fold range in sulfur availability ( 6 ) ,  indicat- 
ing that Met biosynthesis is tightly regulated 
in plants. Cystathionine y-synthase (CGS) 
catalyzes the first committed step in Met 
biosynthesis, and it has been suggested to be 
a key regulatory site of the pathway (5). 
Indeed, CGS activity in Lenz~za and barley is 
regulated positively and negatively in re- 
sponse to the availability of Met (7). 

Analyses of CGS expression in mtol-1 
mutant plants revealed that the steady-state 
levels of CGS mRNA, protein, and enzyme 
activity are three- to fivefold higher than in 
wild-type plants (Fig. 1, A to C). Application 
of Met to wild-type plants reduced the 
amount of mRNA for CGS, whereas no such 
effect was observed in the mtol-1 mutant 
(Fig. ID). This suggests that wild-type plants 
down-regulate the level of CGS mRNA in 
response to exogenous Met, and this regula- 
tion is impaired in the mtol mutant. 

A liquid callus culture system (8) was used 
for hrther studies. As with whole plants, the 
steady-state level of CGS mRNA was reduced 
by feeding calli from wild-type plants with Met 
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(Fig. lE), although the response was less sig- band about 500 bases shorter than the full- 
nificant than in whole plants (9). In addition to length transcript was evident in Met-treated 
an overall reduction in CGS mRNA, a minor wild-type calli (9). Two lines of evidence indi- 

Fig. 1. CCS expression in 
wild-type (WT) and mto 7 - 7 
mutant (mto7). (A to C) 
Levels of CCS mRNA (A), 
protein (B), and enzyme ac- 
tivity (C) in leaves of 
3-week-old plants (27). To- 
tal RNA (10 pg) was ana- 
lyzed by RNA blot hybridiza- 
tion (27) with CCS cDNA 

UBQ tGGJ 
kDr==l* 

used as a probe (28). The 
membrane was rehybridized E W T  

$ 

(26) with a control ubiquitin Met 0 0.1 1 mM 
G ,F 

(UEQ) cDNA (28) (A). Pro- 
# CGS 26SrRNA 

tein extracts (2 pg) were 
subjected to  immunoblot 
analysis (27) by using rabbi 
antiserum to  CCS. CCS pro- 0 2 4 6 2 4  0 2 4 6 2 5 h r  
tein migrated at abok 50 
kD. Asterisk indicates a band 
that was also detected with 
the control serum (B). CCS 
activities (29) relative to 
wild-type activity (5.28 mil- 

0.3 mM Met 
W T  mtol  

liunitslmg) are shown. Error 
bars indicate standard devi- 
ations of three indewndent 0 2 4  0 2 4 h r  

samples (C). (D and E) Effect of Met on CCS mRNA accumulation. Various concentrations of Met were 
applied to plants (27) (D) or callus culture (8) (E) for 3 days and total RNA (10 pg) was analyzed as in (A). 
The 3' and 5' regions of CCS cDNA (28) were also used as probes in (E). (F and C) Time course of Met effect 
in callus culture (8). Samples were withdrawn at time points as indicated after Met (0.3 mM) alone (F) or Met 
(0 or 0.3 mM) and ActD (100 pg/ml) (7 7) treatments (C), and total RNA (10 pg) was analyzed as in (A). 
Control in (C) is ethidium bromide staining of 265 ribosomal RNA Arrowheads indicate positions of 
truncated mRNA (E to C). Representative results of at least triplicate experiments are shown (A to C). 

Fig. 2. Role of CCS exon 1. 
We used cells from liquid 
callus cultures (8) for these 
experiments. (A) Effect of 
.wild-type and mutant exon 
1 on reporter activity in a 
transient expression sys- 
tem. We transfected wild- 
type protoplasts (30) with 
10 p g  of plasmid carrying 
the GUS reporter. The plas- 
mids carried CCS exon 1 
from either wild type (WT) 
or mutants as indicated 
(37). Transfected proto- 
plasts were incubated for 
48 houn with (filled box) 
or without (hatched box) 
0.1 mM Met 19). A control 

cate that this minor mRNA species is a form 
truncated at the 5' end of the transcript. The 
minor band is observed after polyadenylate se- 
lection (10) and a probe covering the 3' un- 
translated region hybridizes to it, whereas one 
covering the 5' region does not (Fig. 1E). This 
truncated transcript may be an intermediate in 
the degradation of CGS mRNA (see below). 

Time course studies showed that the level of 
CGS mRNA in wild-type calli, but not in 
mtol-1 mutant calli, is reduced within 2 hours 
after Met treatment and, simultaneously, the 
truncated transcript appeared (Fig. IF). To de- 
termine whether the reduced accumulation of 
CGS mRNA in wild type is subject to transcrip- 
tional or posttranscriptional reghation, we stud- 
ied mRNA turnover after blocking transcription 
by treating calli with actinomycin D (AC~D) 
(11) (Fig. 1G). In the absence of applied Met, 
turnover of CGS mRNA was faster in wild type 
than in the mtol-1 mutant. Met treatment ac- 
celerated the turnover in wild type but not in the 
mtol-1 mutant (12), which indicates that the 
regulation involves a posttranscriptional event. 
The truncated transcript was also observed in 
wild-type calli after Met treatment and declined 
as the main band decayed. 

The mtol mutation and the CGS gene 
mapped close to each other on chromosome 3 
(13). Sequence analyses of five mtol mutants 
(14) revealed single base changes in the CGS 
coding region, giving rise to alterations in the 
amino acid sequence (Table 1). The mutations 
were clustered in a small region of eight amino 
acids located about 80 residues from the NH,- 
terminus, with two of the independent muta- 
tions being identical. Hereafter, the wild-type 
amino acid sequence defined by the mtol mu- 
tations is referred to as the MTOl region and 
the corresponding nucleotide sequence is 
MTOl. 

The role of the MTOl region was studied by 
transient expression experiments. The coding 
region from exon 1 (amino acids 1 to 183) of 
CGS (15), with or without mtol mutations, was 
fused in-frame to the 5' end of the Escherichia 
coli P-glucuronidase (GUS) reporter gene. The 

plasmid ( lo  B Relative GUS ~ d i v i t y  ' Relative LUC Activity 
the LUC reporter (37) was 
cotransfected as an inter- 
nal standard, and GUS ac- W  T xmtol 
tivities were normalized + mtolx W T  
with LUC activities. The I I 
CUS/LUC values relative to 
the wild-type exon 1 con- 
struct in -ihe absence of 

, 
GUS Reporter Plasmid LUC Reporter Plasmid 

Met are shown. Error bars 
indicate standard deviations of at least five experiments. (B) Cotransfection experiments. Wild-type 
protoplasts were transfected with 10 p g  each of two plasmids canying wild-type (WT) or mtol-7 
mutant (mtol) CCS exon 1 fused to  GUS or LUC reporters (37). Cotransfection was carried out in all 
four combinations. After 48 hours of incubation, GUS and LUC activities were determined and 
normalized with protein content. Reporter activities relative to  those of wild-type exon 1 combination 
are shown. Error ban indicate standard deviations of three to  five experiments. 

constructs were placed under the control of a 
cauliflower mosaic virus (CaMV) 35s RNA 
promoter and used in transfection experiments. 
Reporter activity was lower for the construct 
canying wild-type exon 1 than for those cany- 
ing mtol mutations and reporter activity was 
repressed by incubation with Met (Fig. 2A). In 
contrast, reporter activity was insensitive or less 
sensitive to Met treatment for the constructs 
canying mtol mutations (1 6) or for a construct 
carrying only the first four amino acids of exon 
1 (85-183) (1 7). Thus, wild-type exon 1 con- 
tains a sequence that is both necessary and 
sufficient for down-regulation of reporter gene 
activity in response to applied Met. 

To test whether the nucleotide or amino acid 
sequence is iiportant for this regulation, we 
mutated the sequence of exon 1 by introducing 
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base changes into the MTOl region that do not 
alter the amino acid sequence (silent mutations) 
(Table 1). Transfection experiments showed 
that the silent mutants behaved as did the wild 
type (Fig. 2A), which suggests it is the amino 
acid sequence that plays a role in regulation. 

We examined whether the MTOl region 
functions in cis or in trans by cotransfecting 

CGS has a low overall homology and variable 
length (Fig. 3A). A notable exception was a 
stretch of 38 amino acids that includes the 
MTOl region (Fig. 3Bj. Conservation of the 
MTOl region among widely different plant 
species suggests that it plays a functional role 
(18). 

These results suggest that the exon 1 
plasmid constructs carrying different reporter polypeptide of CGS acts in cis to down-regulate 
genes and exon 1 of CGS from wild type or its own mRNA stability in response to excess 
the mtol-1 mutant. Neither the wild-type nor Met. Although it is unusual for a polypeptide to 
mutant exon 1 affected the reporter activity of act in cis, a plausible explanation is that the 
the other (Fig. 2B), which indicates that the regulation occurs during translation when the 
mutation acts in cis. nascent polypeptide and its mRNA are in close 

Comparison of the CGS amino acid se- proximity. A model for such a regulation mech- 
quence from four plant species showed that the anism predicts a role for the exon 1 polypeptide 
region encompassing exon 1 of Arabidopsis of CGS in destabilizing its own mRNA during 

Amino ac id  pos i t i on  

B 

Fig. 3. Alignment of CCS amino acid sequence. (A) We aligned the deduced amino acid sequences of 
the complete coding region for CCS from Arabidopsis (CenBank database accession no. AB010888). 
soybean'(~lycine m&; ;cession no. AF141602), common ice plant (Mesembryanthemum crystallinuh; 
accession no. AF0693171. and maize [Zea mavs: accession no. AF0077861 bv usine the CLUSTALW 
program (32). The alignkent was scanned wit6 a window of 11 amino acibs,'and t i e  identical (filled 
box) or similar (shaded box) amino acids among the four plant species were counted. (B) Alignment of 
amino acid sequence for the highly conserved region covering the MTOl region. Those amino acids that 
are identical (reversed) or similar (shaded) among the four plant CCS are marked. At, Arabidopsis; Cm, 
soybean; Mc, common ice plant; Zm, maize. Positions of mto l  mutations are marked with asterisks. 

Table 1. Nucleotide and amino acid changes in mtol and silent mutations. The mtol-3 and mtol-5 
mutants are independent of each other because they were isolated from different batches of mutagenized 
population. 

Mutation Amino acid 
position 

Nucleotide 
change* 

Amino acid 
change 

mto 1 mutations 
mtol-1 
mtol-2 
mtol-3, 5 
mtol-4 

Silent mutations 
C84C-1 
C84C-2 
5815-1 
581 5-2 
581 5-3 
R77R-1 

*Nucleotide changes are underlined. 

GGT -,ACT 
ACC -, AAC 
CCT -,CAT 
CCT +CAT 

CGT -, CCA 
CGT -, CCC 
ACC += 
ACC +T(J 
AGC -,= 
CCT +CCC 

Cly + Ser 
Ser -, Asn 
Cly + Asp 
Arg -, His 

Cly (no change) 
Cly (no change) 
Ser (no change) 
Ser (no change) 
Ser (no change) 
Arg (no change) 

translation and an activation of this process by 
Met or one of its metabolites (19). Alterations 
in the amino acid sequence of the MTO 1 region 
abolish either of the reactions. The mechanism 
may generate an intermediate mRNA species 
with a truncated 5' end (Fig. 1E). 

The f3-tubulin gene in animals (20) has a 
similar mechanism in that an amino acid se- 
quence acts in cis to regulate its own mRNA 
stability, although the responsible amino acid 
sequences are placed differently between the 
two systems. The stability of f3-tubulin mRNA 
is down-regulated by the unassembled P-tubu- 
lin subunits, with the NH,-terminal tetrapeptide 
of nascent f3-tubulin being responsible for the 
regulation (20). The presence of another system 
reported here, together with the genetics of 
Arabidopsis and identification of a possible 
degradation intermediate, will help in defining 
the molecular mechanisms of this mode of 
mRNA regulation. 

Much is known about the feedback regu- 
lation at the level of enzyme activity in met- 
abolic pathways in plants (5), but very little is 
known about feedback regulation at the level 
of gene expression. The system reported here 
adds another mechanism to the repertoire of 
metabolic controls (1, 2, 5). 
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Defective Thymocyte 
Maturation in p44 MAP Kinase 

(Erk 1) Knockout Mice 
Gilles Pages,'" Sandrine Gukrin,' Dominique Grall,' 
Fr6deric Bonino,' Austin Smith,3 Fabienne Anjuere,' 

Patrick Auberger,' Jacques Pouyss6gur1* 

The p42 and p44 mitogen-activated protein kinases (MAPKs), also called Erk2 and 
Erkl, respectively, have been implicated in proliferation as well as in differentiation 
programs. The specific role of the p44 MAPK isoform in the whole animal was 
evaluated by generation of p44 MAPK-deficient mice by homologous recombina- 
tion in embryonic stem cells. The p44 MAPK-I- mice were viable, fertile, and of 
normal size. Thus, p44 MAPK is apparently dispensable and p42 MAPK (Erk2) may 
compensate for its loss. However, in p44 MAPK-/- mice, thymocyte maturation 
beyond the CD4+CD8+ stage was reduced by half, with a similar diminution in the 
thymocyte subpopulation expressing high levels of T cell receptor (CD3h'gh). In p44 
MAPKp/  thymocytes, proliferation in response t o  activation with a monoclonal 
antibody t o  the T cell receptor in the presence of phorbol myristate acetate was 
severely reduced even though activation of p42 MAPK was more sustained in these 
cells. The p44 MAPK apparently has a specific role in thymocyte development. 

Erkl or p44 MAP kinase was the first mamma- 
lian MAPK to be charactelized and cloned a 
decade ago (I). This MAPK together with its 
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isoforrn p42 MAPK (Erk2) are commonly ex- 
pressed in most, if not all, tissues and are acti- 
vated through the small guanosine triphos- 
phatase Ras and sequential activation of the 
protein kinases Raf and MEK upon stimula- 
tion of cells with a broad range of extracel- 
lular signals (2). This Ras-MAPK module 
appears to be as central to cellular signaling 
as the Krebs cycle and glycolysis are to en- 
ergy metabolism. Indeed, the Ras-dependent 
MAPK signaling cascade functions in control 
of cell fate, differentiation, proliferation, and 
cell survival in various invertebrates and 
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