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Genetic investigations of malaria require a genome-wide, high-resolution link- 
age map of Plasmodium falciparum. A genetic cross was used t o  construct such 
a map from 901 markers that fall into 14 inferred linkage groups corresponding 
t o  the 14 nuclear chromosomes. Meiotic crossover activity in the genome 
proved high (17 kilobases per centimorgan) and notably uniform over chro- 
mosome length. Gene conversion events and spontaneous microsatellite length 
changes were evident in the inheritance data. The markers, map, and recom- 
bination parameters are facilitating genome sequence assembly, localization of 
determinants for such traits as virulence and drug resistance, and genetic 
studies of parasite field populations. 

The pressing need for progress against P. 
,falcipartlrn has led to international research 
initiatives, including collaborations to se- 
quence the genome, determine its transcrip- 
tion patterns, and characterize its expressed 
gene products (1). In these efforts, genetic 
mapping and linkage analysis are essential 
to locate and verify monogenic and multi- 
genic determinants involved in traits of 
drug resistance (2, 3), transmission and 
gamete development (4 ) ,  and virulence at- 
tributes that include parasite-mediated cy- 
toadherence and host cell invasion (5, 6). 
Marker location data, together with infor- 
mation on recombination frequencies and 
patterns, further provide the basis for ex- 
ploring genetic structure and variation in 
parasite populations ( 7 ) .  

For the genetic map reported here, we 
designed primer pairs for 1759 P. falcipavum 
simple sequence repeats (8). More than 45% 
of these primer pairs provided distinguishable 
length differences between products ampli- 
fied from the HB3 and Dd2 parents of a P. 
falciparurn cross (2). These microsatellites 
were used in conjunction with a previous set 
of restriction fragment length polymorphism 
(RFLP) markers to establish inheritance for a 
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total of 901 markers in 35 independent prog- 
eny (9) .  

The 901 markers constitute an approxi- 
mately uniform set with an average spacing 
of 30 kb, based on the P. falciparunz genome 
size of 25,000 to 30,000 kb (6 ) .  These mark- 
ers show expected patterns of haploid inher- 
itance and fall within 14 inferred linkage 
groups, corresponding to the nuclear chromo- 
somes of P. falcipavum (Fig. 1) (10). Inheri- 
tance patterns within these 14 linkage groups 
distinguish 326 map segments, each defined 
by one or more markers, having an average 
length of 80 kb. The relative sizes of the 
linkage groups correlate closely with physical 
lengths of the chromosomes and span 1556 
centimorgans (cM), indicating an average 
map unit distance of 17 kb1cM. This relation 
is uniform over the 14 parasite chromosomes 
(Fig. 2). The marker order in linkage groups 
2 and 3 is congruent with recently reported 
sequences from the corresponding chromo- 
somes (8). 

Counts and locations of the crossovers are 
modeled well by a single Poisson process 
over almost all regions of the 14 linkage 
groups (Fig. 3) (11, 12). Compared with most 
eukaryotic systems, the P. jalciparurn ge- 
nome thus has a high and unusually uniform - 
meiotic crossover activity per physical length 
of DNA, with only a few intermarker inter- 
vals showing counts that might suggest more 
activity than expected for a strictly random 
process (13). Additional data will be required 
to determine whether these intervals result 
from atypical marker spacings or indicate 
recombination hotspots. 

The analysis of the haplotypes in the 
HB3 X Dd2 cross provides evidence for mei- 

otic gene conversion events in addition to 
the reciprocal crossovers. In 28 confirmed 
instances (Fig. 4), a single marker of one 
parental type was found flanked on both 
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Fig. 1. Linkage map corresponding to P. falci- 
parum chromosome 13. Markers confirmed by 
physical mapping are underlined. RFLP markers 
are indicated in italics. Only intermarker dis- 
tances of more than 4 cM are labeled. Maps of 
linkage groups corresponding to the other chro- 
mosomes, segregation data, and marker and 
primer information are provided on the Inter- 
net ( 7  1). 
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Fig. 2. Plot of physical length 
versus number of observed 
crossovers in the 14 nuclear 
chromosomes of P. falciparum. 
The linear unweighted least 
squares regression line extrapo- 
lates to  zero crossovers at zero 
physical length and has a slope 
of one crossover per 1.67 X l o 6  
base pairs per inferred meiosis, in 
close agreement with the aver- 
age value of 17 kb/cM for the 
entire genome. Chromosome siz- 
es are from pulsed-field gel data 
(6 ) .  
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sides by markers of the other parental type, alone (P < 0.00005) (14). We attribute this 
significantly in excess of the 7.2 instances pre- excess to nonreciprocal conversions of short 
dicted on the basis of reciprocal crossovers DNA segments, as is generally observed in 

Fig. 4. Significant excess of sin- 3 

eukaryotic systems that resolve meiotic recom- 
bination intermediates through either crossover 
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probability range for 
segregation. Positions 
of hrplll (accession number U69552), MEF-1 (~60488), TRAP (X13022), RNA polymerase 111 (M73770), 
and VAPA (L08200) are indicated. 
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conversions are typically much less than the 
30-kb average spacing in the map, many non- 

represents the expected number 1 5  10 15 20 25 30 

calculated from the simple ran- Number of markers in block between crossover points 

dom model based on a single 
Poisson process (14). Haplotype strings are available from the segregation data (1 7). 

reciprocal events would be undetected by the 
current marker set. 

II 

For 13 microsatellite markers, spontane- 
ous mutational events were evident in seg- 

1 1 

regation patterns that showed a third allele 
different from either one of the two canon- 
ical parental alleles (Fig. 5). These third 
alleles were seen in multiple progerly for 
eight of the 901 markers and in only one of 
the progeny for another five markers (16). 
The third allele in each case was inherited 
exclusive of a corresponding canonical pa- 
rental allele. Some of these mutational 
events had occurred within the clonal pop- 
ulations of parental erythrocytic stages, as 
the third microsatellite bands could be am- 
plified as minor products from parental 
DNA (Fig. 5). 

Although the large majority of the bial- 
lelic markers exhibited approximately 
equal numbers of parental forms in the 

1 1 1  

progeny, segregation disparities were 
present in regions of seven linkage groups. 
Most of chromosome 2 and terminal re- 
gions of chromosomes 9 and 13 showed 
significant excesses of Dd2 markers; mar- 
ginal excesses were also found in short 
segments of chromosomes 11 and 12 (Fig. 
3) (11). Conversely, substantial regions of 
chromosomes 3 and 8 carried excesses of 
HB3 markers. Some of these regions in- 
clude chromosome DNA rearrangements, 
such as deletion of the knob-related gene 
(KAHRP) from Dd2 chromosome 2 (9) and 
a subtelomeric translocation in HB3 chro- 
mosome 13 (1 7). Also, certain favored hap- 
lotypes may have been selected among the 
enhanced numbers of recombinant HB3 X 

Dd2 oocysts that were observed in infected 
mosquitoes (9).  

The P. falcipavum linkage map, ge- 
nome-wide availability of polymorphic 
markers, and recombination parameters are 
of value in several areas of field and labo- 
ratory research. The mapped, sequence- 
tagged markers currently provide a scaffold 
on which sequence assemblies from the P. 
falciparum genome project can be assigned 
to chromosomes, ordered, and oriented. 
Over the long term, the markers, mapping 
data, and information on recombination pa- 
rameters will support laboratory genetic 
studies and the genome-wide tracing of 
chromosomal regions in parasite field sam- 
ples. Linkage data from such work will 
provide fundamental information on dis- 
ease determinants and on the genetic struc- 
ture of P. falcipavum populations in malar- 
ious regions. 
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Fig. 5. Evidence of a spontane- ZzS53WRS-  this classification scheme would have produced neg- 
ous microsatellite length change ligible consequence on the overall analysis, as they 
in the HB3 population detected are few and tend to cancel out. 

by marker TA101. The upper m 15. P. J. Hastings. Mutat. Res. 284, 97 (1992). 

band (H*) in the HB3 lane indi- 16. The eight markers with noncanonical alleles in mul- 

cates the presence of a nonca- tiple progeny are C3M29, TA101, C4M41, BM83, 

nonical allele in the parental P11-1, CH12M29, C14M56, and C14M92: the other 
--@ -, five markers are C4M76. C3M63, Y357M3, 

population. Signals from the Y357M2.2, and TABB. 
7C20, 7C140, 7C159, 7C421, 17. K. Hinterberg, D. Mattei, T. E. Wellems, A. Scherf, 
and 7C424 parasites show that this mutant allele was inherited exclusive of the canonical HB3 or EMBO I. 13,4174 (1994). 
Dd2 alleles (H, D). 18. We thank T. Tatusov for graphical display software; D. 

Severson and A. A ScMffer for discussions on linkage 
analysis; and K. Pmitt. J. Ostell, and D. Lipman for advice 
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