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Evidence for a Ubiquitous 
Seismic Discontinuity at  the 

Base of the Mantle 
lgor Sidorin, Michael Gurnis,* Don V. Helmberger 

A sharp discontinuity at the base of Earth's mantle has been suggested from 
seismic waveform studies; the observed travel time and amplitude variations 
have been interpreted as changes in the depth of a spatially intermittent 
discontinuity. Most of the observed variations in travel times and the spatial 
intermittance of the seismic triplication can be reproduced by a ubiquitous 
first-order discontinuity superimposed on global seismic velocity structure 
derived from tomography. The observations can be modeled by a solid-solid 
phase transition that has a 200-kilometer elevation above the core-mantle 
boundary under adiabatic temperatures and a Clapeyron slope of about 6 
megapascal per kelvin. 

Seismic studies provide information about the 
composition, state, and dynamics of Earth's 
mantle. Global seismic velocity images repre- 
sent snapshots of mantle convection (I), where- 
as more detailed waveform studies provide ev- 
idence for phase transitions, chemical heteroge- 
neity, and partial melting in the mantle (2-4). 
Unfortunately, the interpretation of the structur- 
al features of the mantle inferred from seismol- 
ogy is plagued by trade-offs and ambiguities. 
Most global tomographic inversions do not in- 

corporate seismic discontinuities in the mantle, 
attributing any associated travel time anomalies 
to volumetric heterogeneity. Similarly, most 
waveform modeling uses globally averaged 
one-dimensional (ID) seismic velocity refer- 
ence models focusing on isolated regions with- 
out consideration of the geographical variations 
in velocity. This difference between seismic 
inversion techniques makes it difficult to distin- 
guish localized structure from broader anoma- 
lies distributed along the ray paths. As a result, 
there is poor understanding of the relation be- 
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mail: gurnis@caltech.edu neity, solid-solid phase transitions, and partial 

melting. The smaller scale processes produce 
specific signatures in the fine-scale seismic ve- 
locity field that is usually explored by wave- 
form modeling. 

One such mantle feature is a travel time 
triplication attributed to a sharp (9, 2 to 3% 
velocity discontinuity about 250 km above 
the core-mantle boundary (CMB) (6). The 
primary evidence for the triplication is an 
additional phase, Scd, arriving between the 
direct, S, and core-reflected, ScS, shear wave 
phases in about 65" to 83" distance range (2, 
7-9). The relative timing and amplitudes of 
the three phases experience significant re- 
gional variations. This intermittent triplica- 
tion may be due to a laterally varying D" 
discontinuity (10). Alternatively, the ob- 
served spatial intermittance of the triplication 
may be attributed to variations of the local 
velocity gradients accompanying a small 
(-1%) velocity jump (11). 

The triplication is strong or detectable 
beneath the circum-Pacific region, which has 
been associated with zones of faster-than- 
average velocities at the base of the mantle 
(Fig. I), and it is weak or undetectable in 
anomalously slow regions (12). This suggests 
that the local structure can modulate the 
strength of the triplication produced by a 
possibly ubiquitous discontinuity. This poses 
the question if it is possible to predict the 
observed geographic patterns in the strength 
and timing of the phases associated with the 
triplication by using the structure inferred by 
tomographic inversions. 

We used Grand's shear wave velocity 
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model (13) to represent the global large-scale 
seismic velocity structure. Tomographic in- 
versions do not incorporate the Scd phase, so 
that any travel time anomaly arising from a 
D" discontinuity is attributed to a volumetric 
anomalv at the base of the mantle. Given this 
nonuniqueness of the inferred seismic struc- 
ture, we "refined" tomography models by 
adding a discontinuity at a certain level and 
compensated for its influence on travel times 
by adjusting the local volumetric anomaly. A 
physical model predicting the depth of the 
discontinuity at any given location is needed. 
A combination of dynamic and seismic mod- 
eling suggests that a phase change is a more 
likely cause for the D discontinuity than 
thermal gradients or a chemically distinct 
layer at the base of the mantle (11, 14). 
Assuming the D" discontinuity is caused by a 
solid-solid phase transition, we used thermal 
anomalies inferred from tomography models 
(15) to predict its depth variations (16). The 
velocity anomalies provided by the tomogra- 
phy model are mapped onto a fine mesh to 
ensure that the topography of the incorporat- 
ed discontinuity is adequately resolved and 
that each vertical column of the new mesh is 
perturbed by adding a discontinuity and an 
appropriate compensation (Fig. 2) (1 7). 

To exvlore how well the described com- 
posite model incorporating a first-order dis- 
continuity superimposed on the tomography 
reproduces seismic observations, we comput- 
ed 2D synthetic waveforms (18) for a variety 
of ray paths sampling D in five different 
regions (Fig. 1). Differential travel times, 
Tsc,, and T, c,-,,,, are obtained from the 
synthetic waveforms and compared with the 
corresponding observations. These differen- 
tials provide important constraints on the D 
structure, characterizing the heterogeneity 
and possible topography of the discontinuity 
at the base of the mantle. We restricted the 
analysis of the quality of our model predic- 
tions to the T,,,., differential travel times 
(19) and used the root-mean-square (rms) 
misfit (20) to compare various models in 
search of a range of the phase transition 
characteristics most compatible with seismic 
observations (21). We initially focused on the 
observations for Alaska and Eurasia, because 
extensive data sets are available for these 
regions (22). These data sets ar? used to 
calibrate our model. and the most consistent 
model is then used to predict travel times in 
other regions with observations of the D 
triplication. Comparisons of data for Alaska 
and Eurasia with predictions of models incor- 
porating phase transitions with various char- 
acteristics allowed us to select a range of 
models providing travel time predictions 
most consistent with observations (Fig. 3). 
The best predictions are provided by a model 
incorporating a phase transition with y,, = 6 
MPa/K and h,, = 200 krn. Accordingly, we 

will refer to the model characterized by these 
parameters as the "preferred model." Howev- 
er, the variation of the residuals among the 
models within the shaded region in Fig. 3 is 
insignificant, and we cannot discriminate be- 
tween different models with just one average 
travel time residual. However, these models 
can be distinguished by looking at the dis- 
tance dependence of the predicted and ob- 

served travel times. We explore the quality of 
the fit to the observed T,,,-, differentials 
predicted by the preferred model and two 
other models with the smallest travel time 
residuals (Fig. 3). A two-step approach was 
used, where we first obtained a least-squares 
fit to the predicted differential travel times 
(Fig. 4A) and then compared the fitted curves 
to the observed travel times. Using this method, 

60 120 1 BD 240 300 
Phase transition elevatlon above CMB (km) 

Fig. 1. (A) Seismic observations of the D triplication: events (stars) and stations (triangles) used 
in the study. Circles show surface projections of ScS bounce points for the paths that are considered 
(27). The regions with strongly observed D" triplication are shown by green contours and the names 
of the corresponding seismic I D  reference models (34) are given next to the contours. The pink 
squares in the inset indicate ScS bounce points beneath Central America for ray paths that do not 
show any evidence for a D" triplication (8). The three highlighted paths are used in Figs. 2 and 58 
to illustrate the sampled structure at the base of the mantle and its influence on the predicted 
seismic waveforms. The background color represents the shear velocity in the lowermost 240 km 
of the mantle (73). (B) Map of the elevation of the D discontinuity above the CMB predicted by 
the preferred model. The elevations beneath Alaska and Eurasia are lower than suggested by the 
respective 1 D seismic reference models SYLO (243 km) and SCLE (290 km). The elevation of the 
discontinuity beneath Africa and the central Pacific Ocean is likely underestimated, because the 
large slow velocity anomaly there (-4%) implies either chemical heterogeneity or partial melt, and 
our linear scaling between seismic velocity and temperature (75) may not be valid. 
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Fig. 2. Shear velocity cross sections along the ray paths highlighted in Fig. 1. 
(Lett) Event 940808 (8) to  station SHW (path Cl); (middle) event 940110 
(8) to  station FRB (path C2); (right) event 840425 (33) to station PFO (path 
PI). (A) Cross sections through Grand's tomography model (73). Direct (5) 
and core-reflected (ScS) rays are shown. (B) Perturbing a vertical column to 
incorporate a discontinuity using cross section a-a' indicated in (A) as an 
example. The gray shading shows the layers of the tomography model (73). 
Dotted line shows PREM (29); dashed line shows the block anomalies (PREM 

gf 
::'*'J el- 

values with added tomography velocity perturbations); the red solid line 
shows the final profile obtained by adding a discontinuity and a compen- 
sating negative gradient at the base of the mantle (77). (C) Final composite 
model (perturbations with respect to  PREM) for the region marked in (A). 
The grid lines of the fine mesh are shown (every other line is plotted 
horizontally, and one in every 10 is plotted vertically) and the phase 
boundary is indicated by the white line. The phase transition in (B) and (C) 
is characterized by h,, = 200 km and y,, = 6 MPaIK. 

we demonstrate that the preferred model pro- 
I . I . I . I . I . I . I ~  

vides a significantly better fit to the Eurasian 300: 0 
Fig. 3. T,,, differential travel time residuals be- 

and Alaskan data (Fig. 4B) than a model with a : tween data $or Alaska and Eurasia, and predictions 

0 . of rnodels with various phase change characteris- 
phase boundary at a constant depth (Fig. 4C) or : tics (20). The shaded region marks the range of 
a phase boundary corresponding to a negative . 250- - models providing the best fit t o  the data. Models 
Clapeyron slope (Fig. 4D). The other two mod- within this region have approximately the same 
els have small travel time residuals (Fig. 3) but average elevation of the phase boundary above 

predict differential travel times that are incon- > 2001 0 the CMB. They predict T,,,-, with an average 

sistent with the data for Eurasia and Alaska. c residual in the range of 1.8 to  3.4 s. The preferred 
. model with the smallest residual is indicated by a 

Moreover, the preferred model provides a sat- : cross. The models marked with solid circles are 
isfactory fit to the travel times observed for explored further (Fig. 4). 
paths beneath India and the Indian Ocean (Fig. 
4E). The predictions of our preferred model are loo - 
in better agreement with the Indian data than 

1 . I . I . I ' I ' I  

-12 -a -4 0 4 8 12 
are the travel times corresponding to the 1D 7, (YPJK) 
seismic reference model originally used to ex- 
plain the data (7). 

The structure beneath Central America is 
peculiar in that the observed travel time pat- 
terns vary substantially over relatively short 
distances. According to Kendall and Nangini times for the northern Caribbean can be ap- in the Caribbean on par with the respective 
(8), the travel times for the southern Carib- proximated by a model with a 2.45% velocity 1D reference models (Fig. 4F) that were con- 
bean can be approximated by a 1D reference jump 290 km above the CMB (Fig. 1, inset). strained by the waveform analysis in addition 
velocity model with a 2.75% velocity jump Our preferred model reproduces the observed to travel time picks (8). 
250 km above the CMB, whereas the travel regional variations in differential travel times We used our preferred composite model to 

m misfit of T- L...oo.I 
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Fig. 4. Comparison of model predictions with observed TScd-, differential travel times for the 
source-receiver pain shown in Fig. 1. (A) Polynomial least-squares fit (solid lines) to predictions of 
the preferred model (h , .= 200 km, y,, = 6 MPaIK) for Alaska (red) and Eurasia (green). (8) 
Comparison of observecf~,~~, (a running mean is computed in groups of 10; the error ban indicate 
the standard error) for Alaska and Eurasia with the least squares fit to Tscd, predicted by the 
preferred model in (A). (C) Same as in (B), except T,,,, times predicted by model with a phase 
characterized by h,, = 250 km and y,, = 0 MPaIK are used. (D) Same as in (B), except TScd-, times 
predicted by model with a phase characterized by h , = 275 km and y,, = -4 MPaIK are used. 
(E) Comparison of observed T,,-, for India with pre&ctions of the preferred model (solid line) and 
s,eismic I D  reference model SYL1 (34). (F) Comparison of T,,,, for northern Caribbean (blue) and 
southern Caribbean (pink) with predictions of the preferred model (solid lines) and the correspond- 
ing I D  reference seismic models (8). 

explore the predicted patterns in the strength of 
the computed seismic triplication. The observa- 
tions of the D" triplication in the Caribbean and 
central Pacific Ocean regions provide a good 
reference for testing the predictions. In the Ca- 
ribbean, the Scd observations are very robust 
with an exception of the northeastem part, 
where there is no evidence for a triplication (8). 

for the path sampling the structure beneath the 
central Pacific Ocean. All these predictions are 
consistent with observations. 

The predicted variations in the strength 
of the D" triplication were produced entire- 
ly by variations of the local velocity gradi- 
ents, because the discontinuity is present 
globally with the same amplitude. For ex- 

In the central Pacific Ocean, the D" triplication ample, there is a pronounced difference in 
is weak and hardly detectable (12). The geo- the vertical seismic velocity gradients 
graphic pattems in the strength of the D" trip- above the discontinuity (Fig. 2C). The gra- 
lication predicted by our preferred model (Fig. dient in the northwestem Caribbean (Fig. 2, 
SA) are in agreement with observations. The left) is quite sharp, resulting in a strong 
synthetic waveforms (Fig. 5B) are computed seismic triplication. Beneath the northeast- 
for three different paths. The strongest Scd am- em Caribbean (Fig. 2, middle), the gradient 
plitude is predicted for path C1 sampling D" above the discontinuity is smaller and the 
beneath the northwestem Caribbean (Fig. 1) lateral extent of the high-gradient region 
where 0bSe~ationS show that the D" triplication intermittent; the combination of these fac- 
is robust (8). The Scd amplitude for path C2 is tors leads to a much smaller Scd amplitude. 
significantly smaller. Such a weak triplication Finally, the gradient above the disiontinu- 
may be hard to detect in the observed wave- ity in the central Pacific Ocean (Fig. 2, 
forms, particularly when noise is present. The right) is reduced by the slow velocity 
weakest Scd phase is predicted by our model anomaly at the base of the mantle, and the 

strength of the predicted D" triplication is 
substantially dampened. 

The agreement of these trends with obser- 
vations indicates that the D" discontinuity 
may be a ubiquitous feature with the strength 
of the resulting seismic triplication modulat- 
ed by larger scale structure. The variations of 
this structure produce strongvariations in the 
predicted Scd amplitudes and can explain the 
apparent intermittance of the D" discontinuity 
(23). However, local volumetric structure 
alone is insufficient to produce the observed 
regional variations of differential travel times 
(Fig. 4C) (24), requiring an added effect of 
the topography of the discontinuity. An im- 
portant result of our modeling is that the 
topography of the D" discontinuity must be 
correlated with the local volumetric velocity 
anomaly in a way that the discontinuity must 
be elevated in the faster-than-average regions 
and depressed in slower-than-average re- 
gions. This is implied by the positive values 
of Clapeyron slope providing a much better 
fit to the data (Fig. 3) than the negative 
values. This result provides a strong argu- 
ment against the D" discontinuity being on 
top of a chemically distinct layer at the base 
of the mantle (25) and further supports the 
phase transition mechanism for the disconti- 
nuity (11, 26, 27). Our model provides a 
prediction of the elevation of the D" discon- 
tinuity above the CMB anywhere in the world 
(Fig. 1B). The disagreement between the pre- 
dictions and the elevations inferred from 1D 
seismic studies illustrates the trade-offs be- 
tween the location of the discontinuity and its 
larger scale structural context, and signifies 
thi importance of considering structke in 
three dimensions with a proper account for 
the waveform perturbations caused by veloc- 
ity variations along the whole ray path. At 
this stage, we have only examined the 2D 
predictions from our model. As tomographic 
images are sharpened, we would expect to see 
3D effects along certain paths (23). 

An important remaining issue about the 
possible phase transition at the base of the 
mantle is the mineralogical one. No relevant 
phase transition has yet been observed in the 
major elements of the lower mantle: (Mg,Fe)- 
SiO, (silicate perovskite) and (Mg,Fe)O 
(magnesiowiistite). However, several possi- 
bilities have been suggested (28). In addition, 
the moderate requirements for the effective 
change of properties of the mineral assem- 
blage [as little as 1% associated increase in 
shear velocity and a minor volume change 
(11, 27)] allow for a phase transition in some 
of the minor mineralogical constituents of the 
D" region. At the current rate of progress in 
experimental mineral physics, we should 
eventually be able to discover or rule out a 
phase transition at the top of D", and these 
results should provide important guidance to 
such experiments. 
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Fig. 5. Relative strength of the D" triplication for the central Pacific Ocean and Central America 
predicted by the preferred model. (A) Geographical patterns. Each colored square has lateral 
dimensions of lo by lo and represents the average value of Sc&S amplitude ratios for all paths (Fig. 
1) that have surface-projected ScS bounce points within the square. These values were normalized 
by the average distance trend (35). Paths C1, C2, and PI (Fig. 1) are also shown. (B) Synthetic 
waveforms (Green's functions) computed for paths C1, CZ, and P I  (cross sections along these 
paths are shown in Fig. 2). The waveforms are normalized by the amplitude of direct 5 and 
aligned by the Scd peak. 
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r N  1112 

where N is the number of considered ray paths. 
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discontinuity may be produced by the local gradients 
caused by thermal variations alone without a need 
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constrained by mineral physics data (1 1) are not 
capable of producing a triplication consistent with 
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the seismic velocity gradients obtained from tomog- 
raphy inversions (78). 
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Geophys. Res. 95, 1931 1 (1990)l have suggested that 
(Mg,Fe)SiO, may break down into oxides under D 
cond~tions; A. M. Hofmeister (in preparation) argued 
that the velocity jump at the top of D" may be due to 
a MgO transition to NaCl or CsCl structure. 

29. A. M. Dziewonski and D. L. Anderson, Phys. Earth 
Planet. Inter. 25, 297 (1981). 

30. R. D. van der Hilst and H. Karason, Science 283, 1885 
(1 999). 

31. It has been demonstrated (1 1) that a jump of as little 
as 1% in velocity may explain the observations of the 
shear wave D" triplication, provided i t  is accompanied 
by sufficiently large gradients. Here, we use a slightly 
higher value on the premise that tomographic inver- 
sion smears the structure so that the gradients pro- 
vided by the tomography models are somewhat low- 
er than in the real structure. 

32. Adding the discontinuity and the low-velocity com- 
pensation at the base of the mantle only conserves 
travel times of phases that do not travel through D 
or cross D" at steep angles. The imposed low-velocity 
zone would disturb the travel times of phases such as 

Fluid Flow in Chondritic Parent 
Bodies: Deciphering the 

Compositions of Planetesimals 
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Alteration of the Allende meteorite caused shifts in oxygen isotope ratios along 
a single mass fractionation line. If alteration was caused by aqueous fluid, the 
pattern of oxygen isotope fractionation can be explained only by f low of 
reactive water down a temperature gradient. Down-temperature f low of aque- 
ous fluid within planetesimals is sufficient t o  explain the mineralogical and 
oxygen isotopic diversity among CV, CM, and CI carbonaceous chondrites and 
displacement of the terrestrial planets from the primordial slope 1.00 line on 
the oxygen three-isotope plot. 

Carbonaceous chondrites comprise seven dis- 
tinct groups of primitive meteorites. The 
groups are distinguished on the basis of min- 
eralogy, bulk elemental concentrations, and 
size and proportions of constituents such as 
chondrules and calcium-aluminum-rich in- 
clusions (CAIs) (1). Each group is character- 
ized by distinctive oxygen isotope ratios (2). 
The diversity in mineralogy and oxygen iso- 
topic compositions is spanned by the CV, 
CM, and CI groups (3) and has been attrib- 
uted to interactions among different primor- 
dial oxygen reservoirs on distinctive parent 
bodies with different geological histories (4). 
Here we show that reaction between rock and 
flowing water inside a carbonaceous chon- 

drite parent body could have produced zones 
that resemble CV, CM, and CI meteorites in 
mineralogy and oxygen isotope ratios. 

Studies of the Allende CV3 carbonaceous 
chondrite using the ultraviolet laser micro- 
probe show that increases in 170/160  and, 
180/160 at constant A170 on an oxygen 
three-isotope plot (5) (Fig. 1) are associated 
with alteration. The alteration is identified by 
localized enrichments in Fe, C1, and Na and 
by growth of secondary minerals (6 ) .  Alter- 
ation occurred within several million years of 
chondrule and CAI formation about 4.5 bil- 
lion years ago ( 7 )  and has been attributed 
either to reactions between vapor and solids 
in the early solar nebula (8)  or to reactions 
between rock and liquid water at low temper- 
atures within parent bodies that may have 
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that altered and unaltered components fall on 
a single mass fractionation curve (Fig. 1) 
suggest that the A170 of the aqueous fluid (or 
any other reactant) responsible for the alter- 
ation was changed from its original value to 
the rock value by exchange of oxygen with 
the rock. 

The exchange of oxygen between rock 
and a motionless aqueous fluid cannot ex- 
plain the data in Fig. 1 because, when the 
amount of fluid is sufficiently small that its 
A170 is controlled entirely by the rock, it has 
too little oxygen to change rock 6170 and 
6180. This conundrum is quantified by means 
of the commonly used expression for the 
mass balance of oxygen between reacting 
rock (r) and stagnant water (w) 

In Eq. 1, N is the number of oxygens com- 
posing the reacting water or rock; 6 is the 
6180 or 6170 for the indicated phase after 
reaction; 6O is 6180 or 8170 for the indicated 
phase before reaction; and A is the difference, 
6, - 6,, between rock and water at equilib- 
rium. The left side of Eq. 1 is referred to as 
the water-rock ratio. Because Eq. 1 applies to 
both 6170 and 6180, invariant rock A170 
during the exchange of oxygen between rock 
and water with different initial A170 values is 
only possible in the limit, where the amount 
of oxygen composing the water relative to the 
amount of oxygen composing the rock is 
effectively zero 

lim (6, - 6;) = 0 
(h',lN,) - 0 

(2) 

Equations 1 and 2 show that reaction between 
static water and rock could not have shifted 
rock 6180 at fixed A170 as indicated by the 
data in Fig. 1 unless the water and rock had 
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