
Structure of an EGAP-UbcH7 
E2s form a closely related family of pro- 

teins, with about 30 E2s known in humans. 
They contain a 150-amino acid conserved 

Complex: Insights into catalytic core but can have NH2- or COOH- 
terminal extensions, or both (16). E2s can be - 

Ubiquitination by the E2-E3 
Enzyme Cascade 

divided into subfamilies according to their 
specificity for different E3 classes. The E2 
subfamily that functions with the hect class of 
E3s includes the human UbcH5, UbcH7, and 
UbcH8. Individual E2s within this subfamily 

Lan Huang,' Elspeth   in nu can,' Guangli Wang,3 display preference for specific hect E3s as 

Sylvie ~eaudenon? Peter M. Howley: Jon M. Huibregtsen3 well, and this is due to the specificity in the 
binding of the E2 to the hect domain (13, 

Nikola P. ~av le t ich '~~*  17-19). 
To begin to understand how the hect E3 

The E6AP ubiquitin-protein ligase (E3) mediates the human papillomavirus- 
induced degradation of the p53 tumor suppressor in cervical cancer and is 
mutated i n ~ n ~ e l m a n  syndrome, a neurological disorder. The crystal structure 
of the catalytic hect domain of E6AP reveals a bilobal structure wi th  a broad 
catalytic cleft a t  the junction of the two  lobes. The cleft consists of conserved 
residues whose mutation interferes wi th  ubiquitin-thioester bond formation 
and is the site of Angelman syndrome mutations. The crystal structure of the 
E6AP hect domain bound t o  the UbcH7 ubiquitin-conjugating enzyme (EZ) 
reveals the determinants of E2-E3 specificity and provides insights into the 
transfer of ubiquitin from the E2 t o  the E3. 

Ubiquitin-dependent proteolysis is an impor- with the COOH-terminus of ubiquitin. Ubiq- 
tant regulatory mechanism involved in di- uitin is then transferred to the active-site cys- 
verse cellular processes such as cell cycle teine of E2 (ubiquitin-conjugating) enzymes, 
control and signal transduction (1, 2), and maintaining a thioester linkage. E3s, also 
deregulation of targeted proteolysis has been known as ubiquitin-protein ligases, are min- 
implicated in several human diseases (3) The imally defined as additional proteins or pro- 
cellular E6AP protein is a ubiquitin-protein tein complexes necessary for the recognition 
ligase that mediates the human papillomavi- and ubiquitination of specific substrates, and 
rus (HPV) E6 protein-induced ubiquitination these appear to be a functionally diverse set 
and subsequent degradation of the p53 tumor of activities. E6AP belongs to the hect (ho- 
suppressor (4, 5), an event that contributes to mologous to E6AP COOH-terminus) class of 
the development of more than 90% of cervi- 
cal carcinomas. E6AP is also involved in 
Angelman syndrome (AS), where inherited 
mutations, deletions, or other alterations in 
E6AP cause severe motor dysfunction and 
mental retardation (6,  7). It is unknown 
which substrates are critical for AS, but the 
proteins that E6AP ubiquitinates include the 
activated forms of several Src family protein 
kinases (4, the human Rad23 homolog 
HHR23A (9), and the MCM-7 protein impli- 

E3s, which has at least 20 members in hu- 
mans (13). The hect E3s are so far unique 
among the known classes of E3s in that they 
form a ubiquitin-thioester intermediate and 
directly catalyze substrate ubiquitination 
(14). The other E3 classes, including the 
Skpl-Cullin-F box (SCF) complexes and the 
anaphase-promoting complex (APC), have 
not been shown to form thioester intermedi- 
ates with ubiquitin (12). 

Hect E3s share a conserved -40-kD 
cated in chromosomal replication (10). In the COOH-terminal catalytic domain, the hect 
absence of HPV E6, E6AP does not ubiqui- domain, that has at least four biochemical 
tinate p53 (4, 5, 11). activities: (i) it binds specific E2s; (ii) it 

Ubiquitination reactions involve the suc- accepts ubiquitin from the E2, forming a 
cessive action of E l ,  E2, and E3 activities ubiquitin-thioester intermediate with its ac- 
(12). The El  (ubiquitin-activating) enzyme, tive-site cysteine; (iii) it transfers ubiquitin to 
in an adenosine triphosphate (ATP)-depen- the &-amino groups of lysine side chains on 
dent reaction, activates ubiquitin by forming the substrate by catalyzing the formation of 
a thioester bond at its active-site cysteine an isopeptide bond; and (iv) it transfers ad- 

ditional ubiauitin molecules to the growing .., " 
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activities are organized, coordinated, and 
contribute to specificity, we have determined 
the 2.8 h structure (20, 21) of the hect do- 
main of human E6AP (residues 495 to 852) 
and the 2.6 h structure (20, 22) of this do- 
main bound to the human UbcH7 ubiquitin- 
conjugating enzyme. 

Overall structure of the E6AP hect do- 
main-UbcH7 complex. The complex has a 
U-shaped structure, with the E6AP hect do- 
main representing the base and one side and 
UbcH7 representing the other side (Fig. 1, A 
and B, and Table 1). The hect domain con- 
sists of two lobes that pack loosely across a 
small interface and are connected by a three- 
residue hinge (residues 738 to 740). The larg- 
er NH,-terminal lobe (residues 495 to 737) 
has a mostly a-helical structure with an elon- 
gated shape. The smaller COOH-terminal 
lobe (residues 741 to 852) has an a l p  struc- 
ture and contains the catalytic Cys8,' that 
forms the thioester bond with ubiquitin. 

At the junction of the two lobes, there is a 
broad cleft that contains CysS2' at its base 
(Fig. 1, A and B). The N-lobe portion of the 
cleft contains mostly polar and charged resi- 
dues and has an overall negative charge. Res- 
idues contributing to this feature are general- 
ly conserved among hect family members. 
The C-lobe portion of the cleft contains a 
hydrophobic patch consisting of conserved 
residues that are partially exposed to solvent. 

UbcH7, which consists of little more than 
the conserved 150-residue E2 catalytic core, 
has an CLIP structure similar to the structures 
of other E2s (23). UbcH7 binds in a large 
hydrophobic groove on the N lobe of the 
E6AP hect domain, using loops at one end of 
its p sheet and a portion of its NH,-terminal 
a helix. A phenylalanine (Phe63), conserved 
only in the hect-specific E2 subfamily (24), 
binds in the center of the hydrophobic groove 
of the hect domain. The overall structure of 
the hect domain does not change upon 
UbcH7 binding (25). 

The E2-binding groove on the E6AP hect 
domain consists of residues that are only 
moderately conserved but maintain their hy- 
drophobic character in other hect E3s (Fig. 

*TO' whom correspondence should be addressed. to the hect domain (5). 1C). The groove occurs in a part of the E6AP 
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N-lobe structure that appears to be an 80- 
residue subdomain, having its own hydropho- 
bic core and connected to the rest of the N 
lobe through a mostly polar interface and two 
linkers (residues 621 to 622 and 702 to 704). 
The E6AP and UbcH7 active-site cysteine 
side chains are 41 A apart and have.an open 
line of sight between them. 

Catalytic cysteine maps to the interface 
between the N and C lobes. Cys820 is posi- 
tioned near the center of a four-residue loop 
between the S9 and S10 p strands on the C 
lobe. This loop, hereafter termed the active- 
site loop, is nestled next to the N lobe and 
also interacts with it (Figs. 1 and 2). All four 
of the active-site loop residues (Thr8I9, 
Cys820, Phe821, and have roles in 
interdomain packing. Thr8I9 and form 
hydrogen bonds with the N-lobe residues and 
also pack with the rest of the C lobe (Fig. 2). 
Phe821 makes van der Waals contacts with 
the N-lobe Gly546 (Fig. 2). The thiol group of 

the catalytic Cys820 is partially exposed to 
solvent and is in a mixed hydrophobic and 
polar environment. It makes van der Waals 
contacts with the face of the adjacent Phe821 
phenyl group, and is 4.6 A from the G ~ u ~ ~ ~  
carboxylate group and 6.7 A from the His8I8 
side chain (Fig. 2). The side chains of G1d50 
and His8I8 could, in principle, adopt confor- 
mations that would allow them to interact 
with the Cys820 thiol group (Fig. 2). 

The contacts between the active-site loop 
and the N lobe are separated from the N-C 
lobe hinge by a solvent channel -5 A across 
(Fig. 2). The N-C hinge contains the remain- 
der of the noncovalent contacts between the 
two lobes, and these involve residues that are 
partially conserved (Asn603, Ile605, Pro793, 
and Fig. 2). 

Structure and mutagenesis of the cleft 
surrounding the catalytic cysteine. The ac- 
tive-site loop is positioned at the base of a 
broad, shallow cleft (-20 18 wide by -5 18 

deep) that is formed by structural elements 
from both the N and C lobes (Fig. 3A). A 
comparison of 18 hect domain sequences 
from different species, including all five 
yeast hect E3s, indicates that this broad cleft 
is the best conserved portion of the molecular 
surface (Fig. 3A). The highest conservation 
maps to the active-site loop, to a flanking 
acidic patch on the N lobe, and to a flanking 
hydrophobic patch on the C lobe (Fig. 3B). 

In the active-site loop, W19 and AmSZZ 
are highly conserved, whereas Phe821 and 
His818 preceding this loop are moderately 
conserved. Mutation of W I 9 ,  or 
Phe821 to Ala reduced the ability of the hect 
domain to form the ubiquitin thioester inter- 
mediate in our in vitro assay by -70% (26), 
suggesting that the contacts made by the ac- 
tive-site loop at the N-C lobe interface are 
important for this activity. The H818A muta- 
tion caused a reduction of more than 95% 
(26); as His818 has no apparent structural 
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Fig. 1. The E6AP hect domain-UbcH7 complex forms a U-shaped struc- 
ture. (A and B) Orthogonal views of the overall structure of the complex. 
The E6AP hect domain N lobe (consisting of 12 a helices and six fi 
strands), C lobe (six a helices and four fi strands), and UbcH7 (four a 
helices and four fi strands) are colored in green, red, and cyan, respec- 
tively. The two active-site loops are colored yellow. The hect-binding 
loops of UbcH7 are labeled L1 (residues 57 to 65) and L2 (residues 95 to 
100). The UbcH7 active-site loop consists of residues 70 to 101. The 

aotted line ina~cases the open une of sight berweon the active-site 
cysteines of E6AP and UbcH7. [Prepared with the programs MOLSCRIPT 
and RASTER3D (42).] (C) Alignment of the hect domain sequences of 
human E6AP, human Nedd4, and yeast Rsp5. Secondary structure ele- 
ments are indicated. Sequence identity is shown in yellow. Cyan dots 
mark E6AP residues that contact UbcH7; red dots represent residues 
mutated in Angelman syndrome. Shaded squares below each residue 
describe the relative solvent exposure of a residue in a monomer of E6AP. 
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role, this finding suggests that it may partic- protein without substantially affecting the 
ipate in catalysis. formation of the ubiquitin-thioester interme- 

The highest conservation on the N-lobe diate (27). This result implicates residues in 
portion of the cleft surface maps to Arg506, the C lobe as being critical for the catalysis of 
G ~ u ~ ~ ~ ,  and G ~ u ~ ~ O ,  which together form a isopeptide bond formation. 
solvent-exposed salt-bridge network adjacent Angelman syndrome mutations. Most 
to the catalytic cysteine and to Asp607 (Fig. of the AS-associated missense and single 
3B). Mutation of any one of these four con- 
served residues on the N lobe reduced ubiq- 
uitin-thioester formation by more than 90% 
(26), indicating that the N-lobe portion of the 
cleft is also needed for this activity. 

The highest conservation on the C-lobe 
hydrophobic patch maps to Phe785, Leu814, 
Pro815, Ala842, and Phe849. With the excep- 
tion of Phe849, these residues make van der 
Waals contacts with each other and are only 
partially solvent-exposed. Phe849 is solvent- 
exposed and occurs in the partially disordered 
three-residue COOH-terminal segment of the 
protein. Previous studies have shown that 
deletion of the last six residues of E6AP, 

amino acid insertion or deletion mutations-in 
the hect domain map to the catalytic cleft. 
The E550L mutation (28) maps to the con- 
served salt-bridge network on the N-lobe por- 
tion of the cleft (Fig. 3B), and, as discussed 
above, the E550A mutation reduces thioester 
formation by more than 90% (26). L502P 
(28) also maps to the N-lobe portion of the 
cleft, to a hydrophobic core residue (Fig. 3B). 
The I804K (29), F782del (29), and M802ins 
(30) mutations map to the hydrophobic core 
of the C lobe, and these mutations would be 
predicted to destabilize the folded state of the 
C lobe. The K80ldel mutation (31) occurs 
immediately before the S8 strand, adjacent to 

including Phe, eliminates isopeptide bond the active-site loop, and the structure sug- 
formation between ubiquitin and the substrate gests that this deletion mutation would affect 

Fig. 2. The E6AP catalytic cysteine (CysEZ0) 
maps to the interface between the N and C 
lobes of the hect domain. Residues of the 
active-site loop and those that make N-C 
lobe contacts are shown in yellow. N and C 
lobes are colored red and green, respective- 
ly. The hinge region (residues 738 to 740) 
between the N and C lobes is colored 
white. White dashed lines indicate hydro- 
gen bonds; red atoms, oxygen; blue, nitro- 
gen; green, sulfur. 

Table 1. Statistics from the crystallographic analysis. 

the local structure in the vicinity of the ac- 
tive-site loop. 

Other functions have been attributed to 
E6AP, but an analysis of AS mutations 
showed a clear correlation between the loss 
of the ubiquitin-protein ligase function of 
E6AP and AS (32). Our observation that 
many of the AS mutations map to the cata- 
lyhc cleft solidifies the role of the E3 activity 
of E6AP in the etiology of AS. 

Structure o f  the EQAP hect domain- 
UbcH7 interface. UbcH7 has an elongated 
cu/P structure that consists of a four-stranded 
p sheet and four cu helices (Fig. 1, A and B) 
(23). The UbcH7 active-site cysteine (CysS6) 
is positioned on the side of the sheet in the 
middle of a 30-amino acid loop (Fig. 1A). 
One end of the elongated UbcH7 structure 
binds to a V-shaped hydrophobic groove on 
the N lobe of E6AP, burying a total of 1800 
A2 of surface area. The E6AP groove consists 
of two antiparallel helices that form one side, 
two antiparallel P strands that form the other 
side, and a loop that caps one end (Fig. 1, A 
and B). The portion of UbcH7 that binds 
E6AP consists of the L1 and L2 loops and the 
H1 helix (Figs. 1A and 4A). Among these, 
the L1 loop contributes the most extensive 
E6AP contacts (33). These are augmented by 
contacts from the L2 loop and by a few 
contacts from the H1 helix (34) (Figs. 1 and 
4). 

The most critical contacts to E6AP are 
made by Phe63 of the UbcH7 L1 loop. The 
Phe63 side chain binds in the central, deepest 
portion of the E6AP groove and makes van 
der Waals contacts with six hydrophobic and 
aromatic E6AP side chains (Fig. 4, B and C) 

Data set E6AP 
native 

E6AP 
SeMet X I  

E6AP 
SeMet X2 

E6AP 
SeMet X3 

E6AP-UbcH7 
native 

Wavelength (A) 
Beamline 
Resolution (A) 
Observations 
Unique reflections 
Data coverage (%) 
R,, (%I 
MAD analysis (20.0 to 3.3 A) 

Phasing power 
'cullis 

'cullis (=no) 

Refinement statistics 

Data Resolution 
set (4 

Reflections 
( IF !  > 20) 

Total Water 
atoms atoms 

R factor 
(%I 

RMSD 

Bonds Angles B factor 
(4 ("1 (A2) 

E6AP 15.0-2.8 32,190 10,413 0 22.6 28.5 0.012 1.856 2.4 
E6AP-UbcH7 15.0-2.6 36,839 11,754 359  24.2 28.6 0.01 1 1.707 2.2 

Rsym = PhPAIh, ,  - IhI /PhPiIh,,  for the intensity ( I )  of i observations of reflection h.  Phasing power = (Fh,)/E, where (Fhi )  is the root mean square heavy atom structure factor and 
E IS the residual lack-of-closure error. R,,,,,, is the mean residual lack-of-closure error divided by the dispersive or anomalous difference. R factor = PIF,, - F,,,II~IF,,,I, where Fob, 
and F,,,, are the observed and calculated structure factors, respectively. Figure of merit = IF(hkl) , , , l lF(hkl) .  R,, = R factor calculated using 5% of the reflection data chosen 
randomly and omitted from the start of refinement RMSD, root mean square deviations from ideal geometry and root mean square variation in the B factor of bonded atoms. 
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(33). The Phe63 backbone carbonyl group 
forms hydrogen bonds with the side chain of 
the conserved E6AP SeP38. Additional con- 
tacts from the UbcH7 L1 loop are made by 
the side chains of Ala59, Pro62, and Glu6" and 
the backbone carbonyl of Ala59 (Fig. 4, A to 
C) (33). 

The UbcH7 L2 loop is positioned adjacent 
to the L1 loop and binds at the entrance of the 
E6AP groove (Fig. 4D). The L2 loop Pro97 
and Ala98 make van der Waals contacts to 
hydrophobic and polar E6AP residues (34), 
whereas Lys96 and LyslOO form hydrogen 
bonds with the side chain of the E6AP Asp641 
and the backbone carbonvl of resnec- . , a  

tively (Fig. 4D). 
E2-E3 specificity. The central role of 

Phe63 in binding the hect domain, considered 
together with the conservation of Phe63 in 
E2s known to support hect domain-mediated 
ubiquitination in vitro (UbcH5, UbcH7, and 
UbcH8) but not in E2s that function with 
non-hect E3s (Fig. 4A), suggests that a Phe at 
this position may be the primary determinant 
of the specificity of an E2 for the hect family 
of E3s. This is supported by a recent study 
where mutation of the corresponding Phe in 
UbcH5 to Asn eliminated the ability of 
UbcH5 to function with the hect E3 Rsp5 in 
vitro (24). Conversely, introduction of a Phe 
at this position in the non-hect E2 UbcHl 
allowed for partial function of a chimeric 
UbcHlNbcH5 with Rsp5 (24). We thus refer 
to the L1 loop as the specificity loop to reflect 
the proposed role of Phe63 in hect specificity. 

Several studies have indicated that indi- 
vidual E2s from the hect-specific subfamily 
may have preferences for different hect 
E3s. In a yeast two-hybrid assay, UbcH7 
and UbcH8 interacted with E6AP but not 
with Rsp5, and conversely, UbcH5 interact- 
ed with Rsp5 but not with E6AP (19). This 
preference was also reflected in the effi- 
ciency of ubiquitin-thioester intermediate 
formation in vitro (13). This could be due, 
in part, to the contacts made by the L2 loop, 
which is more variable than the L1 speci- 
ficity loop within the hect-specific E2 sub- 
family (Fig. 4A). The two Lys residues 
( L ~ s ~ ~  and Lys'OO) of the UbcH7 L2 loop 
are conserved in UbcH8 but not in UbcH5, 
where they are Ser and Thr, respectively 
(Fig. 4A). The residues and structural ele- 
ments of E6AP that are contacted by these 
UbcH7 Lys side chains differ in Rsp5. The 
E6AP Asp641 is replaced by a Trp in Rsp5, 
and the E6AP Asp652 backbone carbonyl 
group is in a region that has a two-residue 
deletion in Rsp5 (Fig. 1C). 

Transfer of ubiquitin. The transfer of 
ubiquitin from the E2 to the hect E3 likely 
proceeds through a nucleophilic attack on the 
E2-ubiquitin thioester bond by the hect ac- 
tive-site cysteine. This would require the ac- 
tive-site cysteines of the E2 and the hect E3 

Fig,IAbroaddeftattheinterfaadaSthcmd 
CLobescontaimhi@$awrsiwcdrrsidws~ 
mutationredwgthefonnathofthetllkartaror 
'sopeptide bond. (A) The matecular surfaca offhe 
E6AP hed domain ti cobred to 
comewationinl%hectwqwnaer:kuMn~, 

pomap;e1,dl~vchect~kof  

hectproteinsfmmcaenomabdyakel~ (Cen-. 
Bank aaession mnrbers BAA21847, CAA19508. 
w m ,  ad ~4~91061) .  nd two - he'z protckrr (the w diff . 
proainadonewith~iKcestknnunber 
A A D 3 8 9 7 5 ) . T h e t w o ~ a r r r e l a t e d b y a ~  
tionof-BQaboutt)livertkaaxkThedewon 

side chains are y d h .  The reddues mutated in h & ? h n  syndrome are 'indicated with white spheres. 
Orientation is similar to that of Fig. lk 

to be in close proximity. However, in our 
structure the two thiol groups are separated 
by 41 A. It is not clear why the E2 and E3 
active sites are far apart, but this would, in 
principle, make the E2 active site more ac- 
cessible to the El enzyme, and allow for the 
reloading of the E2 with ubiquitin while it is 
still bound to the E3. However, it has not yet 
been determined whether the E2 remains as- 
sociated with the hect domain during each 
enzymatic cycle. 

The juxtaposition of the E2 and E3 active 
sites during ubiquitin transfer appears to 
require a large conformational change in 
the complex. This may involve a change in 
the relative orientation of the N and C 
lobes, a conformational change in the N- 
lobe structure between the E2-binding sub- 
domain and the C-lobe attachment site, or a 
conformational change in the 30-residue E2 
loop that harbors the catalytic cysteine. It is 
conceivable that a different conformation 
of the E2-E3 complex, where the two active 
sites are juxtaposed, also exists in solution. 
Alternatively, a conformational change in 

the complex may be triggered by the E2- 
linked ubiquitin, and this could be mediated 
by interactions between ubiquitin and the 
hect domain. Either the N-lobe acidic patch 
or the C-lobe hydrophobic patch of the hect 
cleft could be a possible ubiquitin interac- 
tion site, as ubiquitin contains both a basic 
patch and a hydrophobic patch (35, 36) 
near its COOH-terminus. 

The structures of the E6AP hect domain 
and of its complex with UbcH7 provide the 
first views of an E3 enzyme and of an E2-E3 
complex. These structures, in conjunction 
with mutagenesis data, ,provide insights into 
the mechanihm of ubiquitin transfer and the 
specificity in the E2-E3 enzyme cascade. 
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Evidence for a Ubiquitous 
Seismic Discontinuity at  the 

Base of the Mantle 
lgor Sidorin, Michael Gurnis,* Don V. Helmberger 

A sharp discontinuity at the base of Earth's mantle has been suggested from 
seismic waveform studies; the observed travel time and amplitude variations 
have been interpreted as changes in the depth of a spatially intermittent 
discontinuity. Most of the observed variations in travel times and the spatial 
intermittance of the seismic triplication can be reproduced by a ubiquitous 
first-order discontinuity superimposed on global seismic velocity structure 
derived from tomography. The observations can be modeled by a solid-solid 
phase transition that has a 200-kilometer elevation above the core-mantle 
boundary under adiabatic temperatures and a Clapeyron slope of about 6 
megapascal per kelvin. 

Seismic studies provide information about the 
composition, state, and dynamics of Earth's 
mantle. Global seismic velocity images repre- 
sent snapshots of mantle convection (I), where- 
as more detailed waveform studies provide ev- 
idence for phase transitions, chemical heteroge- 
neity, and partial melting in the mantle (2-4). 
Unfortunately, the interpretation of the structur- 
al features of the mantle inferred from seismol- 
ogy is plagued by trade-offs and ambiguities. 
Most global tomographic inversions do not in- 

corporate seismic discontinuities in the mantle, 
attributing any associated travel time anomalies 
to volumetric heterogeneity. Similarly, most 
waveform modeling uses globally averaged 
one-dimensional (ID) seismic velocity refer- 
ence models focusing on isolated regions with- 
out consideration of the geographical variations 
in velocity. This difference between seismic 
inversion techniques makes it difficult to distin- 
guish localized structure from broader anoma- 
lies distributed along the ray paths. As a result, 
there is poor understanding of the relation be- 

Seismological Laboratory 252-21, California Institute tween large-scale mantle convection imaged by 
of Technology, Pasadena, CA 91125, USA. seismic tomography and the smaller scale pro- 
*To whom correspondence should be addressed. E-  cesses, which may include chemical heteroge- 
mail: gurnis@caltech.edu neity, solid-solid phase transitions, and partial 

melting. The smaller scale processes produce 
specific signatures in the fine-scale seismic ve- 
locity field that is usually explored by wave- 
form modeling. 

One such mantle feature is a travel time 
triplication attributed to a sharp (9, 2 to 3% 
velocity discontinuity about 250 km above 
the core-mantle boundary (CMB) (6). The 
primary evidence for the triplication is an 
additional phase, Scd, arriving between the 
direct, S, and core-reflected, ScS, shear wave 
phases in about 65" to 83" distance range (2, 
7-9). The relative timing and amplitudes of 
the three phases experience significant re- 
gional variations. This intermittent triplica- 
tion may be due to a laterally varying D" 
discontinuity (10). Alternatively, the ob- 
served spatial intermittance of the triplication 
may be attributed to variations of the local 
velocity gradients accompanying a small 
(-1%) velocity jump (11). 

The triplication is strong or detectable 
beneath the circum-Pacific region, which has 
been associated with zones of faster-than- 
average velocities at the base of the mantle 
(Fig. I), and it is weak or undetectable in 
anomalously slow regions (12). This suggests 
that the local stmcture can modulate the 
strength of the triplication produced by a 
possibly ubiquitous discontinuity. This poses 
the question if it is possible to predict the 
observed geographic patterns in the strength 
and timing of the phases associated with the 
triplication by using the structure inferred by 
tomographic inversions. 

We used Grand's shear wave velocity 
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