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cloning. Second, it is sensitive. Activities can 
be detected in the purified GST-ORF pools 
that simply cannot be detected in extracts or 
cells, the starting point of both conventional 
purification and expression cloning. Because 
the GST-ORFs are individually expressed at 
high levels and are largely free of extract 
proteins after purification, activities can be 
measured for hours without competing activ- 
ities that destroy the substrate, the product, or 
the enzymes. 

In addition to the conventional use demon- 
strated here, this array could be used in two 
other ways: (i) to determine the range of poten- 
tial substrate proteins for any protein-modifying 
enzyme (such as a protein kinase) before genet- 
ic or biochemical tests to establish authentic 
substrates and (ii) to identify genes encoding 
proteins that bind any particular macromole- 
cule, ligand, or drug. Thus, one could rapidly 
ascribe fhction to many presently unclassified 
yeast proteins, complementing other genomic 
approaches to deduce gene b c t i o n  from ex- 
pression patterns, mutant phenotypes, localiza- 
tion of gene products, and identification of in- 
teracting partners. 
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Nongenomic Transmission Across 
Generations of Maternal Behavior 
and Stress Responses in the Rat 
Darlene Francis, Josie Diorio, Dong Liu, Michael J. Meaney* 

In the rat, variations in maternal care appear t o  influence the development of 
behavioral and endocrine responses t o  stress in the offspring. The results of 
cross-fostering studies reported here provide evidence for (i) a causal rela- 
tionship between maternal behavior and stress reactivity in the offspring and 
(ii) the transmission of such individual differences in maternal behavior from 
one generation of females t o  the next. Moreover, an environmental manipu- 
lation imposed during early development that alters maternal behavior can then 
affect the pattern of transmission in subsequent generations. Taken together, 
these findings indicate that variations in maternal care can serve as the basis 
for a nongenomic behavioral transmission of individual differences in stress 
reactivity across generations. 

Individual differences in personality traits ap- 
pear to be transmitted from parents to off- 
spring. A critical question, however, concerns 
the mode of inheritance. Concordance studies 
with mono- and dizygotic twins have provid- 
ed evidence for a genetic mechanism of trans- 
mission even of complex traits (1). In addi- 
tion, parental behavior influences the devel- 
opment of the offspring (2) and could there- 
fore serve as a mechanism for a nongenomic 
behavioral mode of inheritance. In the Norway 
rat (Rattus nowegiclrs), variations in maternal 
care are associated with the development of 
individual differences in behavioral and en- 
docrine responses to stress in the offspring (3, 
4). In the studies reported here we have 
examined the possibility that such variations 
in maternal care might be the mechanism for 
a behavioral transmission of individual dif- 
ferences across multiple generations. 

Mother-pup contact in the rat occurs primar- 
ily within the context of a nest bout that begins 

when the mother approaches the litter, gathers 
the pups under her, lickslgrooms her pups, and 
nurses her offspring while continuing to occa- 
sionally lickigroom the pups, and terminates 
when the mother leaves the nest (5). Naturally 
occurring variations in maternal lickinglgroom- 
ing and arched-back nursing (LG-ABN) have 
been associated with the development of indi- 
vidual differences in hypothalamic-pituitary- 
adrenal (HPA) and behavioral responses to 
stress in the offspring (3, 4). As adults, the 
offspring of high LG-ABN mothers are behav- 
iorally less fearful and show more modest HPA 
responses to stress than do the offspring of low 
LG-ABN mothers. The variation in maternal 
behavior may thus constitute a mechanism for 
the nongenomic behavioral transmission of 
fearfulness kom parent to offspring. Alterna- 
tively, of course, the differences in fearfulness 
and those in maternal behavior may both be 
associated with a common genotype so that the 
observed continuity of individual differences 
from mother to offspring is mediated by a 
senomicallv based ~ a k e i o f  inheritance. - 
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which suggests that individual differences in 
maternal behavior are transmitted across gener- 
ations. To determine the mode of transmission 
we performed a cross-fostering study with the 
offspring of high and low LG-ABN mothers 
(7) .  A primary concern here was that the 
wholesale fostering of litters between mothers 
is known to affect maternal behavior (8). To 
avoid this problem and maintain the original 
character of the host litter, no more than 2 of 12 
pups were fostered into or from any one litter 
(7). The control groups included (i) the off- 
spring of low LG-ABN mothers fostered to 
other low LG-ABN mothers as well as off- 
spring of high LG-ABN mothers fostered to 
other high LG-ABN mothers, (ii) sham-adop- 
tion animals, which were simply removed from 
the nest and fostered back to their biological 
mothers, and (iii) manipulated pups of high 
or low LG-ABN mothers. The limited cross- 
fostering design did not affect group differences 
in maternal behavior. The frequency of pup 
licking/grooming (Fig. 1A) and arched-back 
nursing across all groups of high LG-ABN 
mothers was significantly greater than that 
for any of the low LG-ABN dams, regardless 
of litter composition. 

The biological female offspring of low LG- 
ABN dams reared by high LG-ABN mothers 
were significantly less fearful under conditions 
of novelty (9) than were any of the female 
offspring reared by low LG-ABN mothers, in- 
cluding the biological offspring of high LG- 
ABN mothers (Fig. 1B). This was also ob- 
served for male offspring (10). A separate 
group of female offspring was then mated, al- 
lowed to give birth, and observed for differenc- 
es in maternal behavior (6). The effect on ma- 
ternal behavior followed the same pattern as 
that for differences in fearfulness. As adults, the 
female offspring of low LG-ABN dams reared 
by high LG-ABN mothers did not differ from 
normal, high LG-ABN offspring in the frequen- 
cy ofpup lickingigrooming (Fig. 1C) or arched- 
back nursing (10). The frequency of licking/ 
grooming and arched-back nursing in animals 
reared by high LG-ABN mothers was signif- 
icantly higher than in any of the low LG- 
ABN groups, including female pups original- 
ly born to high LG-ABN mothers but reared 
by low LG-ABN dams. 

Postnatal handling of pups is known to in- 
crease the frequency of maternal licking1 
grooming and arched-back nursing (1 1) and to 
decrease the response to stress in the offspring 
(12). Postnatal handling should alter the pheno- 
type of the low LG-ABN offspring, and the 
behavioral transmission hypothesis would sug- 
gest that these effects should then be transmit- 
ted to the next generation. To see whether an 
experimental manipulation that alters maternal 
behavior would influence the transmission of 
these individual differences in behavior in sub- 
sequent generations, female offspring (F,) of 
high or low LG-ABN mothers were mated (6), 

and the pups (F,) in one-half of the litters in 
each group were exposed daily to brief sessions 
of handling (11). The female offspring of high 
LG-ABN mothers showed significantly more 
lickinglgrooming (Fig. 2A) and arched-back 
nursing than did the offspring of low LG-ABN 
mothers. Thus, as observed in our earlier study, 
individual differences in maternal behavior 
were transmitted across generations. The han- 
dling of the pups significantly increased the 
frequency of maternal lickingigrooming and 
arched-back nursing in the offspring of low 
LG-ABN mothers but had no effect on the 
offspring of high LG-ABN mothers (Fig. 
2A). Thus, the effects of maternal behavior of 
the low LG-ABN mothers with handled pups 
was indistinguishable from that of the high 
LG-ABN mothers. The maternal behavior of 
the adult female offspring (F,) showed the 
same pattern (Fig. 2A), and-this result is 
consistent with the transmission of individual 
differences in maternal behavior across gen- 
erations. As adults, the handled female off- 
spring of low LG-ABN mothers did not differ 
from the offspring of high LG-ABN dams in 

Fig. 1. (A) Mean t SEM percentage frequency 
of licking/grooming in high LC-ABN and low 
LC-ABN mothers (n = 6 to 8 per group), col- 
lapsed over the first 10 days postpartum in the 
adoption study (6, 7). The biological offspring 
of high LC-ABN or low LC-ABN mothers were 
(i) left undisturbed with their mothers, high/ 
control (H/C) and low/control (LIC); (ii) cross- 
fostered back onto their own mothers, highlw 
(H/w) and low/w (L/w); (iii) cross-fostered to 
mothers of the same group, high-high (H-H) 
and low-low (L-L); and (iv) cross-fostered 
across groups, high-low (H-L) and low-high (L- 
H). No more than two pups were cross-fostered 
from any one litter. The ANOVA revealed a 
significant group effect (F = 12.67; P < 
0.0001). Post-hoc analysis revealed that the 
frequency of licking/grooming was significantly 
higher in each of the high LC-ABN groups as 
compared to any one of the low LC-ABN 
groups (P < 0.05; differences are indicated by 
a solid horizontal line). (B) Mean t SEM time in 
seconds spent in the inner area of a novel open 

the frequency of maternal lickinglgrooming 
and arched-back nursing. 

The next question concerned the effective 
transmission of the individual differences in 
behavioral responses to stress in the m a n i p u -  
lated offspring (F,) of these females (F,). The 
level of fearfulness under conditions of novelty 
in the male or female offspring of handled, low 
LG-ABN mothers, which did not differ from 
high LG-ABN mothers in measures of maternal 
behavior, was comparable to that of the off- 
spring of high LG-ABN mothers (Fig. 2B). The 
postnatal handling results suggest that environ- 
mental events that affect maternal behavior can 
alter the pattern of transmission of individual 
differences in stress reactivity and maternal be- 
havior from one generation to the next. 

The effects of variation in maternal care on 
the development of stress reactivity are medi- 
ated by changes in the levels of expression of 
specific genes in brain regions that regulate 
behavioral and endocrine responses to stress (3, 
4, 13). In comparison to the offspring of low 
LG-ABN mothers, the adult offspring of high 
LG-ABN dams showed increased hippocam- 

field (expioration) (9) in the adult female bff- C 
s~r ine  from the cross-fostering studv (n = 6 to " 1  1 
8 peygroup). The ANOVA revgaled ;significant 1 1 
effectW(F L'3.37; P < 0.05) of the mother, a 
significant effect of cross-fostering (F = 11.88; 
P < 0.0001) and a significant mother x cross- 
fostering interaction effect (F = 7.39; P < 0.001). 
Post-hoc analysis revealed that the time spent 
in inner area exploration was significantly (P < 
0.01) higher in the biological offspring of low 
LC-ABN mothers reared by high LC-ABN moth- 
ers (L-H) than in the offs~rine of hieh LC-ABN 
mother; reared by low L G - A ~ N  morhers (H-L). Group 

Croups lying below the solid line differ signifi- 
cantly from those above the line. (C) Mean t SEM percentage frequency of licking/grooming, 
collapsed over the first 10 days postpartum in the adult female offspring from the cross-fostering 
study (n = 5 to 7 per group). The ANOVA revealed a significant effect (F = 26.28; P < 0.0001) 
of the mother, a significant effect of cross-fostering (F = 13.56; P < 0.0001) and a significant 
mother X cross-fostering interaction effect (F = 8.13; P < 0.001). Post-hoc analysis revealed 
that the frequency of maternal licking/grooming was significantly (P < 0.001; solid line) higher 
in the biological offspring of low LC-ABN mothers reared by high LC-ABN mothers (L-H) than in 
offspring of high LC-ABN mothers reared by low LC-ABN mothers (H-L). 

1156 5 NOVEMBER 1999 VOL 286 SCIENCE www.sciencemag.org 



pal glucocorticoid receptor (GR) mRNA ex- 
pression, increased central benzodiazepine 
(CBZ) receptor levels in the central and ba- 
solateral nuclei of the amygdala, and de- 
creased corticotropin-releasing factor (CRF) 
mRNA in the paraventricular nucleus of the 
hypothalamus (PVNh) (3, 4). As adults, the 
offspring of handled, low LG-ABN mothers 
showed hippocampal GR mRNA levels that 
were comparable to those observed in the 
offspring of either handled (H) or nonhandled 

(NH) high LG-ABN mothers and were sig- 
nificantly higher than those in the offspring 
of NHLG-ABN females (Fig. 2, C and D) 
(14). Moreover, the offspring of the Wlow 
LG-ABN females showed significantly re- 
duced CRF mRNA levels in the paraventricu- 
lar nucleus of the hypothalamus in compari- 
son to the offspring of the NHAow LG-ABN 
mothers (Fig. 2, C and E) (14). CRF mRNA 
levels in these animals were comparable to 
those of the offspring of H or NH high LG- 

ABN mothers. In previous studies, we also 
found that the offspring of high LG-ABN 
mothers show increased CBZ receptor bind- 
ing in the amygdala in comparison with the 
offspring of low LG-ABN mothers (3, 4). As 
expected, the adult offspring of Wlow LG- 
ABN mothers showed CBZ receptor levels in 
the central and basolateral nuclei of the 
amygdala that were comparable to those ob- 
sewed in the offspring of either H or NH high 
LG-ABN mothers and were significantly 

Fig. 2. (A) Mean 2 SEM frequency (as a percentage of total observations) of lickin grooming, collapsed over 
the first 10 days post rtum in high and low LC-ABN mothers (F,), with handled (H&br nonhandled (NH) pups 
(n = 5 to 7 per grouprThe ANOVA revealed a significant group X pup matmen interaction effect (F = 7.67; -- .* 
df = 1.19; P < 0.01). Post-hoc analysis showed that low LC-ABN mothers with nonhandled offspring showed 
significantly (*, P < 0.01) less lickinglgrooming than any other group, including low LC-ABN mothers with 
handled offspring. The same group X pup treatment interaction effect (F = 9.78; df = 1,24 P < 0.001) in 
pup licking/grooming was apparent in the lactating female offspring (F,) of these mothers. Open bar, High-NH; 

f 
E "  

striped bar, HighfH; black bar, LowlNH; gray bar, LowIH. (6) Mean 2 SEM time in seconds spent in the inner # 
area of a novel open field (exploration) (9) in the unmanipubted adult female offspring (FJ of H or NH, high 2 or low LC-ABN (FA mothers (n = 8 to 10 per group). The ANOVA revealed a significant group effect (F = 3.39; u 
df = 3,31; P < 0.05). Post-hoc analysis revealed that the time spent in inner area exploration was significantly 
lower in the offspring of the low LC-ABN/NH animals than in any other group (*, P < 0.05). (C) A pseudocolor 
image of representative sections showing relwant brain regions from in situ hybridization studies examining GR EM CnA vm 
mRNA expression in the dorsal hippocampus and CRF mRNA expression in the PVNh in the unmanipubted 
adult female offspring (F3) uf high LC-ABNMH, high LC-ABN/H, low LC-ABNINH, and low LC-ABNINH (F,) mothers (n = 4 per group). (D) Mean & 
SEM levels of CR mRNA (arbitrary optical density units using rSs]-labeled standards) (14) in Ammon's Horn (CAI) and the dentate s (DC) in the 
unrnanipulated adult female offspring (FJ of high LC-ABNINH high LC-ABNM, low LC-ABNINH, and low LG-ABNINH (F,) mothers r 4  per group). 
The two-way ANOVA (group X region) revealed a significant group effect (F = 7.74; df = 3,12; P < 0.01). Post-hoc analysis showed that for both 
the ffi (P < 0.05) and the CAI (P < 0.002) regions, GR mRNA levels were significantly lower (* in the offspring of the low LC-ABNINH animals 
than in any other group. Bar shading is the same as in (A). (E) Mean -C SEM levels of CRF mRNA 1 arbitrary optical density units using PsS]-labeled 
standards) (14) in the WNh in the unmanipulated adult female offspring (FJ of high LG-ABNINH, high LC-ABNIH, low LC-ABNINH, and low 
LC-ABNINH (F,) mothers (n = 4 to 5 per group). The ANOVA revealed a significant group effect (F = 4.1 1; df = 3-15; P C 0.05). Post-hoc analysis 
revealed that in both regions mRNA levels were significantly highly in the offspring of the low LG-ABNINH animals than in any other group (*, P < 
0.05 . (F) Mean -+ SEM levels of CBZ receptor binding (ferntomoles per milligram protein) (75) in the badatera1 nudeus (BLnA) and central nucleus 
(CnAI regions of the arnygdala and the ventmedial nucleus of the hypothalamus (VMH) of unmanipulated, adult female offspring (F3) of high 
LC-ABNINH, high LC-ABNIH, low LC-ABNINH, and low LC-ABNJNH (FJ mothers (n = 4 per group). The two-way ANOVA (group X region) revealed 
a marginal group effect (F = 3.04; df = 3, 12; P < 0.10) and, more Important, a significant group X region interactions effect (F = 3.18; df = 
6, 24; P < 0.02). Post-hoc analysis showed that for both the basolateral (P < 0.05) and the central (P < 0.002) regions of the amygdala. CBZ 
receptor levels were significantly (*, P < 0.05) lower in the offspring of the low LC-ABNINH animals than in any other group. Bar shading is the same 
as in (A). 
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higher than those in the offspring of NHILG- 
ABN females (Fig. 2F) (15). 

These findings suggest that individual dif- 
ferences in the expression of genes in brain 
regions that regulate stress reactivity can be 
transmitted from one generation to the next 
through behavior. The studies of Denenberg 
(1 6) in rodents suggested that individual dif- 
ferences in behavioral fearfulness to novelty 
could be transmitted from parent to offspring 
through a nongenomic mechanism of inheri- 
tance. The results of the present study support 
this idea and suggest that the mechanism for 
this pattern of inheritance involves differenc- 
es in maternal care during the first week of 
life. In humans, social, emotional, and eco- 
nomic contexts influence the quality of the 
relationship between parent and child (1 7) 
and can show continuity across generations 
(18). Our findings in rats may thus be rele- 
vant in understanding the importance of early 
intervention programs in humans. 
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