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An Adenosine Deaminase that 
Generates lnosine a t  the 

Wobble Position of tRNAs 
Andre P. Gerber and Walter Keller* 

Several transfer RNAs (tRNAs) contain inosine (I) at the first position of their 
anticodon (position 34); this modification is thought to enlarge the codon 
recognition capacity during protein synthesis. The tRNA-specific adenosine 
deaminase of Saccharomyces cerevisiae that forms I,, in tRNAs is described. The 
heterodimeric enzyme consists of two sequence-related subunits (TadZpI 
ADATZ and Tad3p/ADAT3), both of which contain cytidine deaminase (CDA) 
motifs. Each subunit is encoded by an essential gene (TAD2 and TAD3), indi- 
cating that I,, is an indispensable base modification in elongating tRNAs. These 
results provide an evolutionary link between the CDA superfamily and RNA- 
dependent adenosine deaminases (ADARsIADATs). 

It has been known for 35 years that inosine 
occurs at the wobble position of tRNA antico- 
dons (1, 2), and it was postulated that these 
tRNAs can translate three codons ending in U, 
C, or A (3). This important modfication occurs 
in eight cytoplasmic tRNAs in hgher eu- 
karyotes (seven in yeast) and in t R N A p  from 
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prokaryotes and plant chloroplasts (4). I,, is 
thereby fomled by hydrolyhc deamination of a 
genomically encoded adenosine (A), and the 
enzymatic activity for this RNA editing reac- 
tion has been partially purified from yeast (5, 
6). A family of mammalian adenosine deami- 
nases (ADARs) that convert A to I in double- 
stranded RNA (dsRNA) and edit diverse cellu- 
lar rnRNA precursors (pre- rnRNAs) has been 
identified (7) ,  but none of these enzymes forms 
I in tRNA. Recently, a yeast and human protein 
that acts on tRNA has been cloned by sequence 
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homology to the deaminase domain of the 
ADAR proteins. This protein, termed Tadlpl 
ADAT1, specifically deaminates A at position 
37 (3' of the anticodon) in eukaryotic tRNAAla 
(8,9). The yeast TAD1 gene is not essential for 
cell viability, and the function of I,, in 
tRNAfIa, which is further methylated to N1- 
methylinosine, is unknown (8). 

A search of the Saccharomyces cerevisiae 
genome for open reading frames (ORFs) en- 
coding putative deaminases revealed a hypo- 
thetical ORF (YJL035ctYJDS) that contains a 
PROSITE pattern (accession number PS00903) 
(10) characteristic of cytidine/deoxycyhdylate 
deaminases (CDAs). To investigate the physi- 
ological relevance of YJL035c, we deleted one 
of the two copies of the gene in a diploid yeast 
strain (11). Sporulation and tetrad analysis of 
heterozygotes showed that these tad2A seg- 
regants were not viable. 

To confirm that TAD2 is required for vege- 
tative growth, we transformed tad2A heterozy- 
gotes with pFL38-Tad2 (a centromeric plasmid 
containing both TAD2 and URA3) or pGAL- 
FLIS6-Tad2 (a centromeric plasmid with URA3 
bearing the coding sequence of TAD2 fused to 
a 5'-FLAG and a 3'-hexahistidine epitope) 

(12). In both cases dissection of transformants 
resulted in four viable spores, and tad2A seg- 
regants containing pFL38-Tad2 or pGAL- 
FLIS,-Tad2, respectively, were isolated. When 
these cells were grown on 5-fluoro-orotic acid 
(5-FOA), which is toxic to cells expressing 
URA3, no colonies appeared at either 23" or 
30°C, showing that TAD2 is an essential gene. 

We next isolated a temperature-sensitive (ts) 
tad2 allele to functionally characterize TAD2 
(13). Cells bearing the tad2-1 allele grew nor- 
mally at 23°C but could not form colonies at 
37°C. A cell-free extract prepared from these 
cells lacked specific tRNA.A34 deaminase ac- 
tivity as measured by incubation with synthetic 
[33P]ATP (adenosine 5'-triphosphate)-labeled 
yeast tRNAfIa (5, 8), which is a natural sub- 
strate (1, 2). Activity was restored by addition 
of purified recombinant Tad2 protein (rTad2p) 
to the extract (14). Furthermore, tRNAAIa iso- 
lated from tad2-1 mutant cells contained un- 
modifed A,,, indicating that Tad2p is involved 
in deamination in vivo (14). However, rTad2p 
alone had no dearninase activity. These results 
suggested that Tad2p is necessary but not suf- 
ficient to form I,, in tRNAs and that an addi- 
tional component is required 

To isolate this factor, we cultured tad2A 
[PGal-FLIS6-Tad21 cells and purified the Tad2 
fusion protein (15). A protein of 38 kD copuri- 
fied in a 1 : 1 ratio with the tagged Tad2p (Fig. 
1, A and B), and fractions containing both 
Tad2p and p38 converted A,, to I,, in synthetic 

tRNAAla (Fig. 1C). To identify p38, the masses 
of lysine C-digested peptides were determined 
by mass spectrometry. Nine protein fragments 
matched the putative S. cerevisiae ORF 
YLR136c [Munich Information Center for Pro- 
tein Sequences (MIPS) accession number 
S.533951. Polymerase chain reaction VCR) and 
sequence analysis on yeast cDNA with primers 
annealing upstream of YLR136c and at the stop 
codon confinned the presence of two introns 
(16). Thus, this gene, named TAD3, represents 
the fifth gene in S. cerevisiae that contains two 
introns (1 7). 

We tested the functionality of these cDNAs 
in vivo by disrupting one allele of TAD3 (11). 
Tetrad dissection of the heterozygotes showed 
that tad3A segregants were not viable. tad3A 
segregants containing the plasmid pFL38-Tad3 
(CEN-URA3) (16) could be isolated. After plat- 
ing the cells on 5-FOA, the cells grew only 
when TAD3 was provided on a second plasmid 
with LEU2 @FL36-Tad3) or ADE2 @Gal-FL- 
Tad3) markers (18). In contrast, t d A  cells that 
expressed Tad3p from the intronic ATG, 
(ANTad3p) had a slight growth defect at 23OC 
and were nonviable at 37°C (18). Extracts from 
these ts cells (tad3-1) lacked tRNA:A34 editing 
activity, indicating that Tad3p is essential for 

deamination (14). The requirement of TAD2 
and TAD3 for cell viability strongly suggests 
that inosine at the wobble position of tRNAs is 
an essential modification in yeast. 

To confirm that Tad2p and Tad3p com- 

Origin 

Fig. 1. Purification of the tRNA Pi34 deaminase. 
(A) Samples (5 pl) of the final MonoQ column 
fractions were subjected to  electrophoresis on a 
12% SDS-polyacrylamide gel, and proteins were 
stained with silver. Load (L) and fraction numbers 
are indicated at the top, and molecular masses on 
the left (in kilodaltons). (B) lmmunoblot analysis 
with a mouse anti-FLAG M2 monoclonal anti- 
body (1 :SO00 dilution). (C) tRNA-specific adeno- 
sine deaminase assay (8). [~x-~~P]ATP-labeled 
yeast tRNAAh (200 fmol) was incubated with 
samples (0.2 p,l) of column fractions for 45 rnin at 
30°C. After ethanol precipitation the RNA was 
digested with P1 nuclease and reaction products 
were separated by one-dimensional thin-layer 
chromat.ography. The chromatographic origin and 
the mieration Dositions of adenosine mono~hos- 
phate TAMP) and inosine monophosphate '(IMP) 
are indicated on the left. 

in t ~ ~ ~ - s ~ e c T f i c  adeno- 
sine deaminase assays (8). 
Abbreviations: y, yeast; 
B.m., B. mon'; E.c., E. coli; 
A34C, mutant tRNA con- 
taining C, instead of & Origin r 

A37C, C3, instead of 4, yeast tRNA-Ala E.coli tRNA-Arg 
(C) Mutant rTad2 and nar  n37 A34 E 

- 
Brn E c  

A37G A q 2  A!! 

B kD L F T 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1  Fig. 2 Reconstitution of 
A &*Q 

B 
45- the tRNA Pi34 deaminase A!$' 2 $Q 8 ." 

@ @ @b Tad2~ +Tad* with recombinant Tad2p ,, 29- - 00-  +Tad2p 
subnmt* L A A : and Tad3p. (A) Purified 45- - 

rTad2p and rTad3p were 
C L FT 23 25 27 29 31 33 35 37 39 41 43 separated by SDS-pACE 29- - 

and stained with Coornas- IMP 

sie blue. (B) Recombinant IMP 

IMI proteins (10 nR) were used 

rTad3 proteins were as- 4 + 1 il * 
%Q 8 8 &." 

sayed on WT ~RNA* of B. ,,,,,, fl 
I I 
I I kD 2 - &$' 2 $&a 

mori. (D) Sequence analy- I I 

:I, ; i4,, 97 sis of edited yeast and E. fi j:,, 66 
coli tRNAs. After incuba- L G C A T G G  C T  A C G  A A 45 

tion of synthetic tRNAs 
with rTad2p-rTad3p or E3. f i  fi, A,, hL 29 
buffer (control), tRNAs 1'1; \ 
were reverse transcribed f \ J b  I 

and am~lified bv PCR and 
T T  G G C A T G G  C T Q C G  A A  

igin 

were &uenced. 
Only the anticodon loop-region is shown. Nudeotide position 34 is underlined, and A peaks are dashed. 
Because inosine base-pairs with C, I is represented as C. (E) UV cross-linking of Tadlp and rTad2p-rTad3p to 
labeled WT yeast ~ R N A ~ ~ .  Reactions (10 pl) were canied out with 200 ng of each recombinant protein and 
250 fmol of labeled tRNA* in assay buffer. After incubation for 15 min at room temperature, the reactions 
were irradiated on ice in a UV Stratalinker at 400 m] and digested with 250 ng of ribonudease A for 30 min 
at 37OC Proteins were separated on denaturing SDS-12% polyaaytamide gels and exposed on a Phosphor- 
Imager screen (Molecular Dynamics). 
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pose the tRNA:A34 deaminase, we reconsti- 
tuted the activity with purified recombinant 
proteins (Fig. 2) (19). The combination of 
rTad2p and rTad3p, but neither protein alone, 
specifically converted A,, to I,, in tRNAs 
from yeast and the silkworm Bombyx mori 
(Fig. 2, B and D). In addition, the in vitro- 
reconstituted deaminase was active on Esch- 
erichia coli t R N A p ,  yeast tRNA,Se' (another 
natural substrate), and a mutant yeast 
tRNAAsp in which the anticodon loop was 
exchanged with that of yeast tRNA,A'p (5). In 
contrast, removal of one base from the 7-nu- 
cleotide anticodon loop in yeast tRNAAla 
(AU33) abolished deaminase activity (14). A 
mixture of Tad2p and T a a p ,  but neither 
protein alone, could be ultraviolet (UV) 
cross-linked to yeast tRNAA'" (Fig. 2E) or B. 
mori ,tRNAA1" (14). This may indicate that 
association of the two subunits is required for 
tRNA binding. To further analyze the Tad2p- 
Tad3p complex, we combined the recombi- 
nant proteins and ran them on a sizing col- 
umn. rTad2p-rTad3p coeluted at an estimated 
molecular mass of 70 kD together with 

tRNA:A34 deaminase activity (2), indicating 
that TaMp and Tad3p form a heterodimeric 
complex. This type of subunit composition 
has not been observed in other deaminases. 
CDAs form homodimeric or homotetrameric 
protein complexes (20), whereas ADARs and 
TadlpIADATl act as monomers (7, 8). 

The COOH-terminal part of Tad3p is relat- 
ed in sequence to Tad2p (26% amino acid 
identity and 45% similarity in 120-amino acid 
overlap) (2). The homologous region contains 
the deaminase motif signatures found in the 
CDA superfamily including the catalytic sub- 
unit APOBEC-1, which converts C to U in 
mammalian apolipoprotein B pre-mRNA (20, 
21) (Fig. 3). In particular, Tad2p-Tad3p share 
the three key amino acids (His, Cys, Cys) in- 
volved in zinc coordination and the proline in 
the deaminase motif I1 that acts as the ammo- 
nium group binding site. Furthermore, Tad2p 
contains a conserved glutamate (Glu59 that is 
required for proton shuttling during catalysis in 
CDAs (20). A Tad2p point mutant, where 

was substituted by Ala (E56A) (22), 
combined with wild-type (WT) Taap ,  had no 

OM 250 

7 hetero- * ~n~fchela6no residue 

Tad3p/UiJAT3 +\= 0 proton-shuttl;ng amlno aod (Glu) 

hAiJARl M A R 1  "2 ~ ~ : : : f : : ~ ~ ~ : ~ : : ~ ~ : ~ ~ : : : ~ ~ ~ ~ ~ N A - -  

ceADAR UOo037 I L A R - C L L R F  Y S E V . .  . H  I U T A -  r V A P K D K . .  . V  adenmine dearn~nnse 
MOAR2 U82120 I I S R ' S L L R F  Y T Q L . .  . H  I S T S '  A R S F D . .  . V  
,RE02 U73586 I V A P - 4 F L H F  Y T O L . .  . H  V S T S '  A R S F S . .  . N  I 

acTadlp AKXn297 i L A L -  A N T V  L N R i  . .  . A  
~pTad lp  AL021748 ~ I L A L ~ F N R L ~ L E H C  . . .  H ~ : ~ ! k ~ ~ ! : ~ : : : : ~ ~ ~ ~ ~ ~ r n i ~ ~ l  

I @A VG E R P R  
I - N L P K R  D 

. .... ., ..a - 
E G V . .  . , . D V w L T H  . v F  Tm:fl: :!: tRNA-eKk-5'*dsam- 

MPOEEC-1 T N  V V N F I K K F T S E R D F H P  ~ F L S w s ~ E ~ O ~ l  
rAPOBEC-1 LO7114 N K  V V N F I E K F T T E R Y F C P  . . .  V F L S W S .  E S R  I C10URNAbeaminalu, 
A E C l  2 2 2  S N [ v l v N F L  E K F T T E R Y F R P  . . L E S P -  P 

hAD.4 S C A M  X W i W  ; : K E V O s A E V v K E A v D I L  
246843 B E E G P A O F V S O A L D L L  

d O A  M59033 T V  G E A A G P E S I W Q A I R E L . .  

Fig. 3. TadZp and Tad3p contain a deaminase domain that is similar to those of CDAs and ADARsI 
ADAT1. (A) Protein domain organization of TadZp and Tad3p. The deaminase domain (DM) is boxed in 
gray. A putative nuclear localization signal (NLS) in Tad3p (black box), the region of sequence similarity 
between TadZp and Tad3p (dashed line), and the lengths of the proteins (in amino acids) are indicated. 
(B) Multiple sequence alignment of deaminase domains. Highly conserved residues found in at least two 
different enzymes are framed in black; similar ones are in gray. The deaminase motifs I, II, and Ill are 
overlined, and the putative Zn2+-chelating residues (#) and proton-transferring amino acid (0) are 
indicated. The DNA Data Bank of JapanJEuropean Molecular Biology LaboratorylCenBank accession 
numbers are indicated in the column next to the names of the enzymes. Abbreviations: C. elegans, 
Caenorhabditis elegans; E. coli, Escherichia coli; H. infl., Haemophilus influenzae; B. sub., Bacillus subtilis; 
P. ging., Porphyromonas gingivalis; A. aeolicus, Aquifax aeolicus; and R. prowazekii, Rickettsia prowazekii. 
Abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Clu; F, Phe; C, Cly; H, 
His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Cln; R, Arg; 5, Ser; T, Thr; V, VaS W, Trp; and Y, Tyr. 

deaminase activity in vitro (Fig. 2C). In Tad3p, 
this Glu is replaced by valine (Va1218) (framed 
in Fig. 3B). The Tad3 point mutant V218E 
acted like the WT protein and could not substi- 
tute for the E56A mutation in Tad2p (Fig. 2C). 
Therefore, Tad2p most likely represents the 
catalytic subunit of the tRNA:A34 deaminase. 

Database searches identified a number of 
sequences related to Tad2p and Tad3p, suggest- 
ing that these putative deaminases are orthologs 
(Fig. 3) (2). Remarkably, the prokaryotic ge- 
nomes encoded only one such homologous 
polypeptide. Therefore, Tad2p and Tad3p may 
be paralogs that appeared after the divergence 
of prokaryotes and eukaryotes by genome du- 
plication. Through this event and further genet- 
ic drift, the eukaryotic tRNA:A34 deaminases 
could have acquired the ability to modify addi- 
tional tRNA substrates. This is consistent with 
the fact that the E. coli tRNA:A34 deaminase 
cannot modify any of the seven yeast tRNAs 
containing I,,, whereas the yeast enzyme can 
modify E. coli tRNA,A'p (5). 

The Tad2-Tad3 protein family appears to 
be positioned evolutionarily between the pro- 
teins of the CDA superfamily and the mem- 
bers of the ADAR family including Tadlpl 
ADATI. Tad2p-Tad3p share the indicative 
deaminase motifs of CDAs and form a het- 
erodimeric complex. But in contrast to 
CDAs, Tad2p and Tad3p do not deaminate 
free cytidine or cytosine in vitro (23, 14). 
Moreover, Tad2p-Tad3p functionally belong 
to the ADAR family. ADARs share the 
deaminase motif I and I1 of CDAs but have a 
conserved deaminase motif I11 that contains 
the third putative Zn2+-chelating residue re- 
quired for catalysis (24) (Fig. 3). 

On the basis of this sequence relationship 
between CDAs and ADARs and considering 
the structural differences between CDA (21) 
and ADA (25), it was hypothesized that 
ADARs evolved from a CDA precursor (26). 
Our results substantiate this hypothesis and we 
further propose that Tad2p-Tad3p is the ances- 
tor of the deaminase domain found in ADARs 
and Tadlp. After the divergence of prokaryotes 
and eukaryotes, a Tad2p-like enzyme might 
have fiuther evolved by establishment of 
deaminase motif I11 and changing site specific- 
ity from position 34 to position 37 in one tRNA 
substrate. This Tadlp-like protein might then 
have evolved to the metazoan ADARs by the 
acquisition of dsRNA-binding modules (8). 
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Developing a p  T cells diverge into the CD4 and CD8 lineages as they mature 
in  the thymus. I t  is unclear whether lineage commitment is mechanistically 
distinct from the process that selects for the survival of T cells wi th  useful T 
cell receptor (TCR) specificities (positive selection). In HD mice, which lack 
mature CD4+ T cells, major histocompatibility complex (MHC) class Il-restrict- 
ed T cells are redirected t o  the CD8 lineage independent of MHC class I 
expression. However, neither TCR-mediated signaling nor positive selection is 
impaired. Thus, the HD mutation provides genetic evidence that lineage com- 
mitment may be mechanistically distinct from positive selection. 

Developing a p  thymocytes go through three 
major phenotypic stages, first expressing nei- 
ther CD4 nor CD8 (double negative; DN), then 
expressing both (double positive; DP), and fi- 
nally expressing only one or the other 
( C D 4 + 8  or CD4-8+) (SP). At the DP stage 
thymocytes are selected to undergo the alterna- 
tive outcomes of negative selection, positive 
selection, or death by neglect depending on the 
interaction of the aPTCR complex with intra- 
thymic major histoco~npatibility complex li- 
gands (I, 2). Coincident with positive selection, 
thymocytes undergo lineage commitment, a 
process that ensures the correlation of TCR 
specificity toward class I or I1 MHC with the 
cell's hnctional phenotype as a CD8+ killer or 
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a CD4+ helper T cell. Various mechanisms 
have been proposed to explain how this corre- 
lation is achieved (3-6). At the molecular level 
CD4 and CD8 coreceptors (7, 8)  as well as the 
Ras-MAPK (9) and Notch (10) pathways are 
likely to play a role. The mutant HD mouse (11) 
is deficient in generation of peripheral CD4+ T 
cells because of a specific defect in thymic 
development not affecting antigen presentation 
or CD4 function, distinct from other spontane- 
ous and induced mouse mutants with similar 
phenotypes (12). Although the HD defect was 
shown to be intrinsic to the hematopoietic lin- 
eage (II), it is unclear whether it maps to 
thymocytes or to bone marrow-derived non- 
thymocytes, which could cause aberrant nega- 
tive selection of class 11-restricted thymocytes. 

To test this, we cotransferred bone marrow 
from HD-lC and HDtl+ mice into the same 
R A G C 1  recipients (13). If another cell type 
were acting in trans to prevent thymocytes from 
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