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Four Evolutionary Strata on the 
Human X Chromosome 
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Human sex chromosomes evolved from autosomes. Nineteen ancestral auto- 
somal genes persist as differentiated homologs on the X and Y chromosomes. 
The ages of individual X-Y gene pairs (measured by nucleotide divergence) and 
the locations of their X members on the X chromosome were found to be highly 
correlated. Age decreased in stepwise fashion from the distal long arm to the 
distal short arm in at least four "evolutionary strata." Human sex chromosome 
evolution was probably punctuated by at least four events, each suppressing 
X-Y recombination in one stratum, without disturbing gene order on the X 
chromosome. The first event, which marked the beginnings of X-Y differenti- 
ation, occurred about 240 to 320 million years ago, shortly after divergence of 
the mammalian and avian lineages. 

The human X and Y chromosomes, like those 
of other animals, are thought to have evolved 
from an ordinary pair of autosomes (1). The 
pseudoautosomal regions at the termini of the X 
and Y chromosomes still recombine during 
male meiosis, ensuring X-Y nucleotide se- 
quence identity there. Elsewhere on the X and 
Y chromosomes, however, X-Y recombination 
has been suppressed. These nonrecombining 
regions of the X and Y chromosomes have 
become highly differentiated during evolution, 
and only a few X-Y sequence similarities per- 
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sist within them. These modem X-Y gene pairs 
are the remaining "fossils" where extensive se- 
quence identity between ancestral X and Y 
chromosomes once existed. The recent discov- 
ery of many X-Y genes has made it possible to 
examine the entire group to search for patterns 
of human sex chromosome evolution. Thus far, 
the human sex chromosomes-the best charac- 
terized mammalian sex chromosomes-have 
been found to contain 19 X-Y gene pairs (2). 

We first compared the locations of all 19 
pairs of genes on the human X and Y chromo- 
somes (Fig. 1). We determined the relative 
positions of the X-linked genes through radia- 
tion hybrid analysis, in many cases confirming 
previously published localizations (3). Map po- 
sitions of the Y-linked homologs were obtained 
principally from the literature (4-6). On the X 
chromosome, most of the X-Y genes map to the 
short arm, where they are concentrated toward 
the distal end. By contrast, the X-Y genes are 

were separated by ultracentrifugation, followed by 
two-phase partitioning to enrich for plasma mem- 
branes, as described previously [T. W. Short, P. Rey- 
rnond, W. R. Briggs, Plant Physiol. 101, 647 (1993)l. 

33. Antibodies against NPHl were previously described 
(7). Rabbit polyclonal antisera were raised (22) 
against a COOH-terminal NPH3 fusion protein [CBD- 
NPH3C2 (see Fig. 3A)]. CBD-NPH3 protein was ex- 
pressed from pET34-EkILIC in Escherichia coli and 
purified according to manufacturer's instructions 
(Novagen, Madison, WI). 

34. NPH1-NPH3 interaction was examined in yeast with 
the Matchmaker Gal4 Ii System (Clontech, Palo Alto, 
CA). Expression of fusion peptides was verified by 
imrnunoblot analysis (9, 22) with monoclonal anti- 
bodies raised against the Gal4 DNA binding domain 
(GBD) and Gal4 activation domain (GAD) (Clontech). 

35. J. H. Miller, Experiments in Molecular Genetics (Cold 
Spring Harbor Laboratory, Plainview, NY, 1972). 

36. We thank R. Harper for data in Fig. 1; J. M. Christie 
and W. R. Briggs for GBD-NPH1 constructs and NPHl 
antisera; D. Randall for production of NPH3 antisera; 
the Arabidopsis Biological Resource Center in Colum- 
bus, Ohio, for BAC clones and cDNA libraries; and 
members of our laboratory for helpful comments on 
the manuscript. This work was funded by USDA 
National Research Initiative grant 96-35304-3709, 
NSF grant MCB-9723124, and University of Missouri 
Research Board grant RB96-055. 

3 June 1999; accepted 17 September 1999 

found as singletons or small clusters throughout 
the euchromatic portion of the Y chromosome. 
In general, the map order of the X-linked genes 
corresponds poorly to that of the Y-linked ho- 
mologs. Local exceptions to this rule are pro- 
vided by three small gene clusters that are 
present on both X and Y chromosomes (Fig. 1). 

We next measured, for each of the 19 X-Y 
gene pairs, synonymous nucleotide divergence 
between the X-linked and Y-linked coding re- 
gions (7). Because synonymous substitutions 
do not alter the encoded protein, they are gen- 
erally assumed to be nearly neutral with respect 
to selection. The statistic K, (the estimated 
mean number of synonymous substitutions per 
synonymous site) is often used to gauge evolu- 
tionary time (8). In the present context, K, 
values provide a measure of the evolutionary 
time that has elapsed since the gene pairs start- 
ed differentiating into distinct X and Y forms. 
The calculated K, values are given in Table 1, 
where gene pairs are listed according to map 
order on the X chromosome. 

We noted that the 19 K, values appeared to 
cluster into approximately four groups (Fig. 2): 
0.94 to 1.25 (group I), 0.52 to 0.58 (group 2), 
0.23 to 0.36 (group 3), and 0.05 to 0.12 (group 
4). Each X-Y gene pair's K, value differed 
significantly from those of all gene pairs in 
other groups (P 5 0.02). The most strilung 
observation was that, on the X chromosome, 
the four Ks-defined groups of genes are ar- 
ranged in an orderly sequence (Fig. 2). X-Y 
genes are stratified by age along the length of 
the X chromosome. By contrast, on the Y chro- 
mosome, the Ks-defined groups appear to be 
scrambled (compare Table 1 and Fig. 1). 

What might account for the orderly stratifi- 
cation of X-Y genes by age on the human X 
chromosome? We hypothesize that, during evo- 
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lution, differentiation of the X from the Y chro- 
mosome was initiated one region, or stratum, at 
a time. Regions were recruited in the order of 
their physical position, with stratum 1 (contain- 
ing the genes of group 1) having been the fxst 
to embark on X-Y differentiation, and stratum 4 
having been the most recent. Genes in the same 
stratum began differentiating into X and Y ho- 
mologs at about the same time, accounting for 
their similar K, values. 

X-Y differentiation would have occurred 
only after X-Y recombination ceased (9). Our 
findings suggest that during evolution, X-Y re- 
combination was suppressed regionally, begin- 
ning with stratum 1 and subsequently expanding 
in discrete steps to include strata 2, 3, and 4. 
Chromosomal inversions, which are known to be 
capable of suppressing recombination across 
broad regions in mammals (1 O), would appear to 
be the most likely mechanism. These inversions 
must have occurred on the evolving Y chromo- 
some, where the strata have been scrambled, but 
not on the X chromosome, where the order of 
strata apparently has been preserved (Figs. 1 and 
2). [Had the strata on the human X chromosome 
been extensively shuffled during evolution-as 
may have occurred on the mouse X chromosome 
after divergence of the human and murine lin- 
eages ( l l t w e  would have observed no corre- 
lation between the age of X-Y gene pairs and the 
map positions of their X-chromosomal mem- 
bers.] In the modem human sex chromosomes, 
the proximal boundary of the pseudoautosomal 
region is spanned by a gene that is intact on the 
X chromosome, but grossly interrupted on the Y 
chromosome (12), consistent with disruption of 

ElFlAY 

RBMY 

an ancient pseudoautosomal region by a Y-chro- stitutions alter the encoded protein and are con- 
mosomal Inversion We speculate that thls par- stralned by selection Thus, their frequency (K,, 
ticular event was the most recent in a senes of the estimated mean number of nonsynonymous 
inversions, each of which enabled X-Y differen- substitutions per nonsynonyrnous site) is a func- 
tiation to begin in one stratum tion of both evolutionary time and selective 

This model of staged, region-by-region mi- constraints on the encoded proteins The degree 
tiation of X-Y differentiation also accounts for 
two global features of the X chromosome's 
gene content (I) the concentration in strata 3 
and 4 of genes with detectable Y homologs 
(Fig 1) and (11) the concentration on the short 
arm (strata 2, 3, and 4) of genes that escape X 

Table 1. Sequence divergence between homologous X- and Y-linked genes. 

inactivation, some with and some without Y 
homologs (13) Evolutionary theory predicts 
that once X-Y recombination ceased withm a 
stratum, the genes on the affected portion of the 
Y chromosome began to decay, with most of 
the Y-lmked genes ultimately being obliterated 
(I) As an adaptive response, homologous 
genes on the X chromosoine were up-regulated, 
and subsequently became subject to X inactiva- 
tion, processes thought to have spread dunng 
evolution on a gene-by-gene or cluster-by-clus- 
ter basis (14) If decay of Y-lmked genes and 
adaptation of X-linked homologs were gradual 
evolutionary processes, then one would expect 
the youngest X strata to exhibit the highest 
densities of (1) genes with detectable Y ho- 
mologs and (11) genes that escape inactivation 
Both predictions are met (Fig 1) (13) 

A companson of the youngest (group 4) 
gene pairs with the older (groups 1 through 3) 
gene pairs illustrates certain temporal features of 
X-Y differentiation We measured both synon- 
ymous and nonsynonymous substitutions for 
each gene pair (Table 1) Nonsynonymous sub- 

DNA Protein Sequence 
Gene pair Ks KA KsIKA divergence divergence compared 

(%) (%) (nucleotides) 

Group 4 
GYGZ/GYGZP* 0.1 1 0.06 1.8 7 12 525 
ARSD/ARSDP* 0.09 0.07 1.3 7 13 846 
ARSE/ARSEP* 0.05 0.04 1.2 4 9 615 

3 

2 

(1) 

2.3 5 
1.2 11 
1.2 6 
1 .o 7 

Group 3 
7.3 7 

32 9 
5.8 7 
6.6 11 
9.0 12 
1.1 15 
3.3 12 

Group 2 
8.3 16 
6.5 17 

Group 7 
19 18 
3.8 29 
6.6 28 

Fig. 1. Map of homologous 
genes in nonrecombining re- 
gions of human X and Y chro- 

RBMX mosomes. Pseudoautosomal re- 
SOX3 gions of X and Y are black; het- 

erochromatic region of Y is gray. 
Radiation hybrid analysis (3) was 
used t o  map genes on the X 
chromosome, which is drawn on 
a centiRay scale. Ks-defined stra- 

ta on the X chromosome are indicated. The 
boundary between strata 2 and 1 is somewhere 
between SMCX and RPS4X; here, i t  is arbitrarily 
shown at the centromere (white oval). Genes and 
pseudogenes on the Y chromosome were ordered 
previously by analysis of naturally occurring de- 
letions (4, 5). UBEIX has a homolog on the squir- 
rel monkey Y chromosome but not on the human 
Y chromosome (29). Brackets denote three small 
gene clusters (labeled a, b, c) that are present on 
both X and Y chromosomes. 
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*Y copy is pseudogene. DNA and protein divergence refer to uncorrected nucleotide (coding region) and amino acid 
divergence (nonidentity). 
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Fig. 2. Plot of K, (Table 1) versus X-chromosome 
map position (Fig. 1) for 19 X-Y gene pairs. 

of constraint can be reflected in the ratio Ks/KA; 
values greater than one indicate the presence of 
constmints on both homologs, and values in the 
vicinity of one are consistent with lack of wn- 
straint on at least one homolog (8,15). In groups 
1 through 3, 10 of 11 gene pairs exhibit Ks/KA 
ratios of 3 or higher (Table I), suggesting that 
natural selection has preserved the Y copies of 
these genes. Without such selection, these X-Y 
homologies (especially those in groups 1 and 2) 
would no longer be visible. By contrast, the 
seven gene pairs in group 4 show Ks/KA ratios 
of 1 to 2, and in five of these pairs, the Y copy 
is known to be a pseudogene. Among the group 
4 pairs, X-Y homology is readily apparent even 
in the absence of selective constraint, because 
there has been little time for erosion of sequence 
similarity. Thus, the Ychromosomal genes of 
the older groups, and especially those of groups 

3m- 
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Fig. 3. Plot of X-Y divergence time (age) versus 
average K, value for X-Y gene pain (weight- 
averaged) in each stratum. The X chromosome 
schematic is adapted from Fig. 1. Maximum and 
minimum age estimates for strata 2.3, and 4 are 
bracketed; these are not statistical confidence 
intervals. Theory predicts an approximately linear 
relationship between age and K, value (8); the 
shaded area is calibrated with respect to stratum 
2, whose age is 130 to 170 million years (27) and 
whose average K, value is 0.53. By extrapolation, 
the age of stratum 1 is estimated between 240 
and 320 million years. 

1 and 2, are survivors of an early winnowing 
process that is still ongoing in group 4. 

To determine the age of the Ks-defined stra- 
ta, we used two methods. First, we considered 
published information on homologs of represen- 
tative genes in diverse mammals. The maximum 
age of stratum 4, for example, was suggested by 
the prior obse~ation that homologs of STS and 
KALl are pseudoautosomal or autosomal in pro- 
simians (16-18). Assuming that suppression of 
X-Y recombination is an irreversible evolution- 
ary step (14), this implies that X-Y differentia- 
tion in stratum 4 began less than 50 million 
years ago @la), when the simian and prosimian 
lineages diverged (19). Minimum ages of the 
strata could also be inferred. For example, STS 
and KALl have been shown to have X- and 
Y-specific homologs in both New and Old 
World monkeys (16, 17), suggesting that X-Y 
differentiation in stratum 4 began at least 30 Ma, 
when the New and Old World monkey lineages 
diverged (19, 20). Using similar logic, we in- 
ferred the ages of stratum 3 (80 to 130 million 
years), stratum 2 (130 to 170 million years), and 
stratum 1 (130 to 350 million years) from prior 
data on gene homologs in moredistantly related 
species, including nonprimate mammals, mar- 
supials, monotremes, and birds (21). 

These cross-species comparisons yielded 
reasonably precise estimates of age for strata 2, 
3, and 4--the younger strata-but only crude 
estimates of age for stratum 1. Because this 
oldest stratum might contain information about 
the origins of mammalian sex chromosomes, its 
age is of great interest. Here, we used a second 

dating method, based on Ks values for X-Y gene 
pairs. Theory predicts that among human X-Y 
gene pairs, Ks values should be roughly propor- 
tional to age (8). This expectation is met by the 
X-Y gene pairs of strata 2,3, and 4 (Fig. 3). By 
extrapolation, we estimated that X-Y differenti- 
ation began 240 to 320 Ma in stratum 1 (Fig. 3). 
These findings suggest that X-Y divergence be- 
gan shortly after the mammalian lineage arose, 
having diverged from the lineage of birds (with 
Z-W sex chromosomes) between 300 and 350 
Ma (19). [Because the sex chromosomes of 
birds appear to be completely unrelated to the 
mammalian sex chromosomes, it is thought that 
they arose independently, from a different auto- 
s o d  pair (22).] Interestingly, our Ks findings 
indicate that SOX3 and SRY (the primary sex- 
determining gene) are among the oldest known 
X-Y gene pairs in humans (Table 1). This find- 
ing strengthens an hypothesis, by Foster and 
Graves, which states that an ordinary autosomal 
pair became sex chromosomes when mutations 
fashioned one allele of SOX3, originally an au- . . 
tosomal gene, into the male-deterrmnmg factor 
SRY (23). Indeed, formal cluster analysis of the 
Ks values we report suggests that the X-Y genes 
of group 1 might actually comprise two distinct 
strata, with SRYlSOX3 perhaps being older than 
the two other X-Y gene pairs of group 1 
(RPS4XYand R B M W )  (24). Although the dif- 
ference in Ks values between SRYlSOX3 and the 
two other X-Y gene pairs is not statistically 
significant, the evidence is suggestive. 

If future studies establish that the group 1 
genes are divisible into two strata, these results 

Fig. 4. A proposed sequence of evolutionary events that generated four strata on the human X 
chromosome. Four inversions on the Y chromosome are postulated. Each inversion reduced the size 
of the pseudoautosomal (X-Y recombining) region (black; for simplicity, only one pseudoautosomal 
region is shown for each chromosome) and enlarged the portions of the X (yellow) and Y (blue) 
chromosomes that did not recombine during male meiosis. Ongoing decay and loss of Y genes 
offset these periodic expansions of the nonrecombining region of the Y chromosome. Points of 
divergence from the sex chromosomes of other mammals are indicated. This model does not 
preclude the occurrence of (i) additional inversions or other rearrangements within the nonrecom- 
bining portion of the evolving Y chromosome or (ii) similar rearrangements on the evolving X 
chromosome, so long as they do not disturb the fundamental order among the four strata. 
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would also help date the emergence of X inac-
tivation during mammalian sex chromosome 
evolution. XIST, an X-specific gene which plays 
a pivotal role in X inactivation (25), is located 
near RPS4X and therefore would be in the 
younger of the two strata—not in the stratum 
where the nascent X and Y chromosomes first 
differentiated. This would controvert the hypoth
esis of Chandra, who speculated that X inactiva
tion emerged contemporaneously with the chro
mosomal sex-determining mechanism (26). 

Consistent with our evolutionary map, 
Graves and colleagues have postulated that the 
long arm and proximal short arm of the human 
X chromosome are at least 170 million years 
old (27, 28). They have referred to this portion 
of the X as the "XCR" (X conserved region). 
Graves's XCR corresponds approximately to 
our strata 1 and 2. They have also postulated 
that the distal short arm of the human X chro
mosome is younger. This "XAR" (X added 
region) was attributed to translocation of an 
autosome to the pseudoautosomal region of 
both X and Y after divergence of placental 
mammals from marsupials (27, 28). Our strata 
3 and 4 are found within Graves's XAR. 

In conclusion, we postulate that the evolution 
of human sex chromosomes was punctuated by 
at least four events, plausibly a series of inver
sions on the Y chromosome (Fig. 4). Each event 
suppressed X-Y recombination in one stratum 
and enabled X-Y differentiation to proceed 
there. The first of these events, which created 
stratum 1, was roughly contemporaneous with 
the birth of the mammalian sex chromosomes 
and the emergence of SRY as the primary sex 
determinant. This occurred about 240 to 320 Ma, 
shortly after the mammalian and avian lineages 
diverged. The pseudoautosomal region was ex
panded by translocation of autosomal material 
between the second and third events (which cre
ated strata 2 and 3, respectively). The fourth 
event occurred relatively recently, during pri
mate evolution, creating stratum 4, where X-Y 
differentiation is still in its earliest stages. 
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