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Seismic Consequences of Warm 
Versus Cool Subduction 

Metamorphism: Examples from 
Southwest and Northeast Japan 

Simon M. ~eacock'" and Kelin wang2 

Warm and cool subduction zones exhibit differences in seismicity, seismic 
structure, and arc magmatism, which reflect differences in metamorphic re- 
actions occurring in subducting oceanic crust. In southwest Japan, arc volcanism 
is  sparse and intraslab earthquakes extend to 65 kilometers depth; in northeast 
Japan, arc volcanism is more common and intraslab earthquakes reach 200 
kilometers depth. Thermal-petrologic models predict that oceanic crust sub- 
ducting beneath southwest Japan is 300" to 500°C warmer than beneath 
northeast Japan, resulting in shallower eclogite transformation and slab de- 
hydration reactions, and possible slab melting. 

During subduction, variably hydrated basalts 
and gabbros of the oceanic crust transform to 
eclogite, a relatively dense rock consisting 
primarily of garnet and omphacite (Na-Ca 
clinopyroxene). The transformation of hy- 
drated metabasalt to eclogite releases sub- 
stantial amounts of H,O (I)  and increases the 
density of subducting slabs (2). Kirby et al. 
(3) proposed that dehydration reactions trig- 
ger intermediate-depth (50 to 300 km) in- 
traslab earthquakes and suggested that deeper 
intraslab earthquakes observed in cold sub- 
duction zones may reflect kinetic hindrance 
of eclogite formation. In a given subduction 
zone, the depth and nature of eclogite forma- 
tion and slab dehydration reactions depends 
on the pressure (P)-temperature (T) condi- 
tions encountered by the subducting oceanic 
crust. Temperatures at depth in subduction 
zones vary because of variations in conver- 
gence rate, thermal structure (age and sedi- 
ment thickness) of the incoming lithosphere, 
and possibly rates of shear heating (4). We 
present thermal models for the subduction 
zones of southwest (SW) and northeast (NE) 
Japan and examine the metamorphic evolu- 
tion of subducting oceanic crust. 

In many subduction zones, detailed seis- 
mic investigations reveal the presence of a 
thin ( < l o  km thick), low seismic-velocity 
layer coinciding with the zone of thrust and 

intermediate-depth earthquakes (3, 5, 6 ) .  The 
seismic velocity of eclogite is comparable to 
mantle peridotite, thus the dipping low seis- 
mic-velocity layer is generally interpreted as 
subducted oceanic crust that has not trans- 
formed to eclogite (3). Beneath SW Japan, 
subducted oceanic crust of the Philippine Sea 
plate is marked by a layer with low P-wave 
(V, = 6.6 to 6.9 km s-') and S-wave (V,  = 
3.8 to 3.9 km s-I) velocity which extends to 
60 km depth (7). Beneath NE Japan, the 
low-velocity layer, representing subducted 
oceanic crust of the Pacific plate, persists to 
150 km depth and has slightly higher V, - 
7.5 km s-' (5, 8). Beneath SW Japan, the 
maximum depth of intraslab earthquakes is 
-50 to 65 km (9). In NE Japan, inhaslab 
earthquake activity peaks at 125 km depth 
and extends to 200 km depth (3), and deep 
earthquakes occur down to 670 km depth (5). 

Abundant Holocene volcanism occurs in 
NE Japan (Fig. 1) with a well-defined volcanic 
front located - 100 km above the top of the 
subducting Pacific plate (5). Most NE Japan arc 
lavas exhibit calc-alkaline geochemistry, which 
reflects partial melting in the mantle wedge 
triggered by the infiltration of aqueous fluids 
derived from the subducting slab (10). In SW 
Japan, Holocene volcanism is relatively sparse. 
Andesite and dacite erupted at Daisen and 
Sambe volcanoes in SW Japan (Fig. 1) are 
geochemically similar to adakites (111, whch . . 
are interpreted to represent partial melts of sub- 
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depicted in Fig. 1 (13). The geometry of the heating (Q,,) along the subduction thrust; 
subducting plates was constrained by seismic Q,, = 0 W mP2 for SW Japan and 0.029 W 
reflection studies (14) and Wadati-Benioff zone mP2 for NE Japan down to 70 km depth. 
seismicity (5, 15). Existing surface heat flux Sediment thickness at the trench is 1.4 km for 
data were used to estimate the rate of shear SW Japan and 0.35 km for NE Japan (15). For 

Fig. 1. Tectonic map of Japan 42 a 

showing Holocene volcanoes 
(solid triangles) (ZO), trench- 
es (lines marked with open 
triangles), and location of 
thermal profiles. D, Daisen 
volcano; 5, Sambe volcano. 38 a 
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Fig. 2. Calculated thermal structure for (A) NE and (B) SW Japan subduction zones. Rigid Japan 
lithosphere is shaded with darker shading representing crust. Black triangles mark location of 
volcanic front. Contour intewal = 100°C. 

NE Japan, we calculated the steady-state ther- 
mal structure for 130-million-year-old (Ma) 
oceanic lithosphere subducting at 91 mrn 
yeat-' (Fig. 2A). For SW Japan, the subduction 
of the fossil Shikoku Ridge beginning at 15 Ma 
(16) requires transient heat-transfer solutions 
(17). For SW Japan, we present the thermal 
structure resulting from subduction at a rate of 
45 mm year-' for 15 million years, during 
which the age of the incoming plate increases 
from 0 to 15 Ma (Fig. 2B). For the initial 
temperature condition, we used the steady-state 
solution for a 100-Ma slab subducting at 45 mm 
yeat-'. On the basis of sensitivity tests using 
different parameters, we estimate uncertainties 
in the calculated thermal structure of subducted 
oceanic crust to be 250 to 100°C, primarily due 
to uncertainties in the mantle-wedge flow mod- 
el and thermal properties. 

The subducting Pacific plate beneath NE 
Japan is cooler than the subducting Philippine 
Sea plate beneath SW Japan (Fig. 2). At 50 
km depth, the calculated temperature along 
the slablmantle interface is only 200°C for 
NE Japan, compared to 500°C for SW Japan. 
Beneath the volcanic front, the slablmantle 
interface temperature is 500°C in NE Japan, 
compared to > 8 0 0 " ~  in SW Japan. In both 
subduction zones, maximum mantle-wedge 
temperatures beneath the volcanic front are 
- 1200°C. 

To predict the sequence of metamorphic 
reactions within the subducting oceanic crust, 
we combined calculated P-T paths with a pet- 
rogenetic grid for metabasalts (Fig. 3). The 
eclogite metamorphic facies is bounded by the 
blueschist facies at low temperatures and by 
the amphibolite and granulite facies at high 
temperatures (Fig. 3A). The temperature-de- 
pendent blueschist + eclogite transition in- 
volves garnet-forming dehydration reactions, 
which release up to 5 weight % H,O (I). In 
contrast, the amphibolitelgranulite + eclogite 
transition involves the pressure-dependent an- 
hydrous reaction of plagioclase to form ompha- 
cite + quartz. At T < -900°C, hydrous min- 
erals, including lawsonite, chlorite, amphibole, 
zoisite, and chlorotoid, are stable in the eclogite 
facies even though the primary minerals that 
define the eclogite facies, garnet and ompha- 
cite, are anhydrous (Fig. 3A) (18, 19). Thus, 
subducting oceanic crust that transforms to ec- 
logite has the capacity to transport H20 to 
greater depths. Partial melting in basaltic com- 
positions is possible at temperatures as low as 
650°C (Fig. 3A). 

Pacific oceanic crust subducting beneath 
NE Japan passes through the lawsonite-blue- 
schist facies (Fig. 3B). The top of the crust 
intersects the eclogite facies at -1 10 km 
depth, whereas the base of the crust may not 
intersect the eclogite facies until depths > 160 
km, beyond the limits of our model (Fig. 3B). 
In contrast, Philippine Sea oceanic crust sub- 
ducting beneath SW Japan passes through the 
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greenschist and epidote-blueschist/amphibo- 
lite facies and enters the eclogite facies at 
-50 km depth. The different depths of pre- 
dicted eclogite formation agrees well with the 
observed depth extent of the low seismic- 
velocity layer beneath NE Japan (150 km) 
and SW Japan (60 km). Furthermore, the 
lower V, and V, of the layer beneath SW 
Japan compared to NE Japan is consistent 
with the lower seismic velocities of green- 
schist and epidote-blueschist/amphibolite fa- 
c i e ~  compared to the lawsonite-blueschist fa- 
cies (6). In both subduction zones, the low 
seismic-velocity layer persists to depths 
where the subducting hydrous oceanic crust 
is predicted to transform to eclogite, suggest- 
ing that kinetic retardation of eclogite-form- 
ing reactions (3) may not be required. 

Hydrous phases in the subducting oceanic 
crust remain stable to > 160 km depth be- 
neath NE Japan but only to 90 km beneath 
SW Japan. These depths are similar to the 
observed maximum depth of intraslab earth- 
quakes in the two subduction zones and sup- 
port the dehydration embrittlement model for 
intraslab earthquakes (3). The lack of in- 
traslab egrthquakes at depths >65 km be- 
neath SW Japan may be a consequence of 
aseismic ductile behavior at T > 600°C. Be- 
neath NE Japan, the peak in intraslab earth- 
quake activity at 125 km depth may reflect 
fluids released by garnet-forming dehydra- 

tion reactions in the upper part of the sub- 
ducting crust (Fig. 3B). Intermediate-depth 
earthquakes beneath NE Japan define a dou- 
ble seismic zone (5); earthquakes in the lower 
seismic zone may be caused by dehydration 
reactions in subducting oceanic mantle. 

Oceanic crust subducting beneath NE Ja- 
pan is relatively cool and does not undergo 
partial melting (Fig. 3B). The abundant arc 
volcanism in NE Japan reflects partial melt- 
ing in the overlying mantle wedge, presurn- 
ably triggered by infiltration of aqueous flu- 
ids derived from the subducting slab. The 
calculated P-T paths for NE Japan suggest 
abundant H,O may be subducted to > 100 km 
depth, where dehydration reactions such as 
the garnet-forming reaction can release fluids 
beneath the hot core of the overlying mantle 
wedge. In contrast, the oceanic crust subduct- 
ing beneath SW Japan is relatively warm, and 
calculated P-T paths approach the fluid- 
absent partial melting reaction associated 
with the breakdown of hornblende (Fig. 3B). 
Adakite-like lavas in SW Japan may reflect 
partial melting of the subducting slab (11). 
Beneath SW Japan, most of the water in the 
subducting oceanic crust is driven off at shal- 
low depth (<SO km) and is not available to 
trigger partial melting of the mantle wedge, 
consistent with the relatively sparse volca- 
nism and lack of normal calc-alkaline mag- 
matism (3). 

lite; EB, epibote blueschist; 
CS, greenschist; amph, am- 
phibole; chl, chlorite; ctoid, 
chlorotoid; laws, lawsonite; 
zoi, zoisite. (B) Calculated P-T 
conditions (horizontal lined 
area) for oceanic crust sub- 
ducting beneath NE and SW 
japan. Solid line, top of sub- 
ducting oceanic crust; dashed 
line, base of subducting oce- 
anic crust. 

Fig. 3. Metamorphic condi- 5 I I I I ~  I , -160 
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