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The last glacial period was terminated by an abrupt warming event in  the North 
Atlantic -15,000 years before the present, and warming events of similar age 
have been reported from low latitudes. Understanding the mechanism of this 
termination requires that the precise relative t iming of abrupt climate warming 
in  the tropics versus the North Atlantic be known. Nitrogen and argon isotopes 
in  trapped air in Greenland ice show that the Greenland Summit warmed 9 i 
3°C over a period of several decades, beginning 14,672 years ago. Atmospheric 
methane concentrations rose abruptly over a -50-year period and began their 
increase 20 t o  30 years after the onset of the abrupt Greenland warming. These 
data suggest that tropical climate became warmer or wetter (or both) -20 t o  
80  years after the onset of Greenland warming, supporting a North Atlantic 
rather than a tropical trigger for the climate event. 

Evidence for extremely abrupt changes in 
Earth's climate has come principally from the 
annually layered Greenland ice cores (1-7), 
although the tropics collect most solar radia- 
tion and are central to Earth's heat and water 
vapor budgets (8). Accordingly, tropical cli- 
mate records are critical for understanding 
abrupt climate events. Especially important 
are those records that reveal cause-and-effect 
relations by giving the precise relative timing 
of changes in the tropics and the high lati- 
tudes. However, high-resolution tropical cli- 
mate records are few in number and for the 
most part equivocal on the existence and 
timing of abrupt climate events. 

Evidence from Bolivian ice cores at 18"s 
shows that tropical climates warmed rapidly 
about 15 thousand years (ky) B.P. (before 
present, where present is 1950 A.D.) (9). This 
warming is roughly synchronous with promi- 
nent warming at 14.67 ky B.P., known as the 
B~lling Transition, seen in the Greenland Sum- 
mit ice cores (1, 2, 5), European pollen records 
(1 0), and many North Atlantic sediment records 
(I 1, 12). Other recent studies have documented 
low-latitude rapid climate shlfts at about this 
time in the Santa Barbara basin (13), Arabian 
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Sea (14), and the Cariaco basin of Venezuela 
(15); however, dating uncertainties of a century 
or more limit the precision with which the 
timing of these events and their putative Arctic 
counterpart may be compared. 

Atmospheric methane concentrations also 
increased abruptly at this time, as inferred from 
measurements of trapped air bubbles in the 
Greenland Summit ice cores (16, 17) and Ant- 
arctic ice cores (18, 19). This increase is 
thought to have been caused by an increase in 
wetland extent and temperature, as wetlands 
were the principal source of methane in the 
preindustrial period (1 7) and changes in sink 
strength are thought to have been small (20). 
Tropical wetlands have been proposed as a 
major contributor to the B~lling methane in- 
crease, because ice sheets covered the primary 
extratropical methane source areas at this time 
(1 7, 21). This hypothesis is supported by the 
fact that the difference between Greenland and 
Antarctic methane concentrations (referred to 
as the interpolar gradient) underwent a relative- 
ly small increase despite the -25% jump in 
concentration (21, 22). When inverted for 
source distribution with a three-box atmospher- 
ic transport model, methane records from 
Greenland and Antarctica imply a predominant- 
ly low-latitude source (23). Because the atmo- 
sphere is well mixed (mixing time of - 1 year) 
relative to methane's lifetime in the atmosphere 
(-10 years) (24) and wetland methane emis- 
sions are broadly correlated with temperature 
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and precipitation, methane concentration inte- 
grates climate information over the entire trop- 
ical region. Knowledge of the precise timing of 
the abrupt methane increase relative to the 
Greenland warming should thus place con- 
straints on the relative timing of tropical and 
Arctic abrupt climate change. 

Two problems have prevented relating 
changes in temperature and methane in the ice 
core record. First, the age of the air trapped in 
bubbles is less than the age of the enclosing ice 
because air is occluded at some depth below the 
surface of the ice sheet in the bubble close-off 
region (25,26). This gas age-ice age difference 
is not known well for past times, making un- 
certain the relative timing of temperature 
(which is obtained from the ice matrix) and 
atmospheric gas changes (1 7, 26). Second, the 
temperature inferred from the 1801160 ratio of 
the ice (6180,,,) is uncertain because factors 
other than local mean annual temperature may 
affect this ratio, such as the seasonality of pre- 
cipitation at the ice core site (27) and the tem- 
perature and proximity of the water vapor 
source (28, 29). Borehole temperature calibra- 
tions of the S180,,, paleothernometer have 
demonstrated that the modem spatial calibra- 
tion underestimates the glacial cooling by a 
factor of two (30). These issues have raised the 
question of whether the abrupt increases in 
Greenland S180,,, represent isotopic artifacts 
rather than local temperature changes as com- 
monly inferred (29, 31) and have created un- 
certainty about the magnitude of temperature 
change they may indicate. 

Here we address these problems with mea- 
surements of isotopes of nitrogen and argon gas 
trapped in air bubbles in the GISP2 (Greenland 
Ice Sheet Project 2) ice core. Bubble 15N/14N 
and 40Ar/36Ar record a signal of rapid temper- 
ature change at the surface of the ice sheet (7). 
The combination of nitrogen and argon isotope 
measurements provides a direct estimate of the 
magnitude of the temperature increase, based 
on laboratory calibration of the isotope fraction- 
ation due to thermal diffusion. Methane and 
nitrogen diffuse downward through the snow 
layer at nearly the same speed (32) and are 
trapped together in the bubbles, making a pre- 
cise comparison of the timing of atmospheric 
methane change and local temperature change 
possible (7). 

The porous and partially consolidated layer 
of snow on top of polar ice sheets (known as 
fun) contains air that mixes by molecular dif- 
fusion with the overlying atmosphere (25). The 
isotopes of gases in this stagnant column of air 
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separate as a result of temperature gradients and 
gravitational settling (7, 33) (air in the free 

per mil for Ei40Ar, corresponding to 20.5 and methane increases and 615N excursions (Fig. 
2 1 K, respectively. 2). 615N may be thought of as a temperature- 

troposphere does not separate in thls manner 
because of vigorous convective mixing). A gas 

Gravitational settling (33) is given by 6 = 

[e""'gz'RT - 11 X lo3, where Am is mass 
difference, g is gravitational acceleration, z is 
depth, R is the gas constant, and T is tempera- 
ture. For example, a 92-m-deep stagnant air 
column at 226 K will be enriched by +0.48 per 
mil in 615N relative to the top of the column (in 
our case, the atmosphere). Gravitational effects 
may be separated from thermal effects by com- 
paring 615N with Ei4'Ari4, because the latter is 
only -60% as sensitive to thermal fractionation 
as 615N. Gravitational settling scales with the 
mass difference (4 for 40Ar/36Ar), SO gravity 
affects 615N and S4'Ar/4 equally (33). Mea- 
surements in modem fim air c o n f m  the differ- 
ent sensitivities of nitrogen and argon isotopes 
to thermal diffusion (Fig. 1). 

change indicator that is only sensitive to rapid 
temperature change (7). The 615N signal thus 
confms  that the 6180,,, increases were indeed 
abrupt warming events and not isotopic arti- 
facts. The event at 14.67 ky B.P. separates the 
last glacial period from the Balling warm inter- 
val and is known as the Balling Transition (5) 
(in the ice core record, this interval is also 
referred to as Interstadial 1). The cold period 
immediately preceding the transition is referred 
to as the Oldest Dryas (5). The gas time scale 
presented in Fig. 2 is approximate and is based 
on model estimates of the gas age-ice age 
difference that may be in error by several hun- 
dred years (39), so the slight apparent lead of 
615N over 6180ic, is not significant. A detailed 
expansion of the record from 14.5 to 14.9 ky 

mixture subjected to a temperature gradient will 
unrnix slightly, with heavier gases generally 
moving toward colder regions (34, 35). The 
magnitude of the steady state effect is given by 
6 = OAT, where 6 is the fractional deviation of 
the isotope ratio of the cold gas parcel from the 
warm gas parcel, AT is the temperature differ- 
ence between the two gas parcels, and Cl is an 
empirical quasi-constant we call the "thermal 
diffusion sensitivity" (36). We measured R in a 
known temperature gradient in the laboratory 
and found preliminary values of = + 0.0 145 
per mil K-' for 615N and $0.036 per mil K-' 
for S4'Ar at a mean temperature of -43°C 
(estimated error of i 3 % ;  future work may 
reduce this error). For example, a 10 K temper- 
ature difference will result in a $0.145 per mil 
enrichment in 615N in the cold gas relative to 
the warm gas. For comparison, our l a  measure- 
ment precision (defmed as the reproducibility 
of replicate analyses of ice cut from the same 
depth) is 20.007 per mil for 615N and 20.03 

After an abrupt climate warming, a temper- B.P., covering the Balling Transition, is shown 
ature gradient will persist in the fin1 for several in Fig. 3. In contrast to Fig. 2, the gas ages 
hundred years (the thermal equilibration time of shown are deduced on the basis of our inference 
the fim) and will thermally fractionate the entire of a thermal diffusion signature in the gas iso- 
air column (7). Gases diffuse about 10 times as topes (40). Individual replicate analyses of 615N 
fast as heat in polar fim (37), so the isotopic and Ei40Ari4 in pieces of ice cut from the same 
signal penetrates to the bottom of the fim long depth in the ice core are shown. Means of 
before the temperature equilibrates, in about a replicate methane analyses are given. Analyti- 
decade (7). The bubbles thus record a signal of 
the climate event as an abrupt increase in 615N, 
slightly smoothed by the diffusion process in 
the fim (38), followed by a gradual decrease in 
615N over several hundred years as the fim 
becomes isothermal once again. 

Two prominent abrupt increases in GISP2 
6180,,, occurred during the last deglaciation, at 
14.67 and 11.64 ky B.P. on the layer-counted 
time scale, and were accompanied by abrupt 

cal techniques for gas isotopes and methane are 
described elsewhere (41). 

615N rises across the transition from base- 
line Oldest Dryas values of +0.48 per mil to 
peak values of +0.63 per mil (Fig. 3). Methane 
appears to rise over a -50-year period from 
14.65 to 14.60 ky B.P. 615N first rises clearly 
beyond the envelope of Oldest Dryas variability 
at 14.672 ky B.P. (1821.16-m depth). We infer 
that this point marks the onset of the warming 

--- model 

. . . . . . . . . model 
- Fig. 2. GlSP2 accumula- 

t i i n  (51), oxygen iso- 
topes (5), methane, and 
nitrogen isotopes of air 
in bubbles during the 
last deglaciation, with 
Taylor Dome (Antardi- 
ca) methane shown for 
comparison (27). Low- 
resolution nitrogen data 
are from (54). 

0.00 0.05 0.10 0.15 0.20 0.25 
deviation from atmosphere, per mil 

Fig. 1. Depth profile of nitrogen and argon 
isotope ratios in air withdrawn from the snow- 
pack at Siple Dome, Antarctica, on 14 January 
1998, S15N is defined as [(15N/14NSamp,e)/(15N/ 
14N,tmoSp here) :I] X l o 3  and is expressed in 
units of per m ~ l .  S40Ar is the corresponding 
quantity for the 40Ar/36Ar ratio and is divided 
by 4 t o  facilitate comparison with 615N. The 
seasonal cycle of temperature at the surface 
creates a strong temperature gradient in the 
top few meters, causing thermal fractionation. 
Because the profile shown was taken in sum- 
mer, temperature decreases with depth. Ther- 
mal diffusion thus drives a transient "pulse" of 
heavy isotopes down into the colder firn, which 
mixes by diffusion with the underlying gas. 
Note the "pulse" of enriched S15N and S40Ar/4 
centered at about 6-m depth, superimposed on 
the linear downward increase due t o  gravita- 
tional settling. The good agreement of 615N 
with S40Ar/4 at depths >20 m confirms that 
gravity is the only process affecting the deep 
firn at present at this site, whereas the weaker 
S40Ar/4 response in the "pulse" is the finger- 
print of thermal diffusion. 

+ GlSP2 
+ Taylor Dome 

10 11 12 13 14 15 16 17 
Layer-Counted Age (ky B.P.) 
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and may correspond to the 1.7 per mil steplike 14.655 ky B.P. (Table 1). Methane first exceeds 
increase in 8180i, (Fig. 3) and the abrupt dou- this range at 14.645 ky B.P. (1820.17 m), -27 
bling of snow accumulation (5) at this time. years after the corresponding change in 615N. 
However, methane concentration remains with- We infer that methane began rising at some 
in its range of Oldest Dryas variability [470 to time during the 10-year interval between the 
5 10 parts per billion by volume (ppbv)] in this latter two samples and thus conclude that atmo- 
ice sample and in the subsequent sample at spheric methane concentration started rising 

Fig. 3. The m y e a r  
window encompassing 
the W n g  Transition, 
showing high-resolution 
measurements of oxy- 
gen isotopes of ice (5) 
and nitrogen, argon, and 
methane measurements 
made on trapped air 
bubbles. The gas age is 
deduced by assuming 
that the abrupt change 
in nitrogen isotopes 
marked by the dashed 
vertical line corresponds 
to the shift in oxygen 
isotopes at 14.65 ky B.P. 
Nitrogen isotope rnea- 
surements made at URI 
and the Wpps Institu- 
tion of Oceanography 
(510) appear to have a 
-0.02 per mil offset 
in the age range 14.59 
to 14.64 ky B.P., which 
we do not understand. 

14.5 14.6 14.7 14.8 14.9 
Deduced gas age (ky B.P.) 

-20 to 30 years after the onset of the Greenland 
warming. Annual layers are discernable in this 
interval (3), making these estimates robust. Ab- 
solute time scale uncertainty (-2%) (42) does 
not affect these conclusions, because they are 
based on comparisons of gas isotopes and 
methane from the same depths. 

The separation between 815N and 640Ar/4 
values in the Bslling interval (Fig. 3) con- 
firms that thermal diffusion rather than grav- 
ity is responsible for the 615N anomaly and 
implies that air temperatures warmed by 9 2 
3OC by 14.60 ky B.P. (Fig. 4). 6180ic, in- 
creased by 3.4 per mil across the transition 
(difference between the means of the 60-year 
period after 14.65 ky B.P. and the 100-year 
period before 14.67 ky B.P.) (9, implying an 
oxygen isotope temperature sensitivity (a) 
across the transition of 0.38 per mil K-' 
(+0.19 or -0.09 per mil K-I). This is close 
to the borehole temperature-calibrated value 
of 0.33 per mil K-' (30), providing indepen- 
dent verification of the borehole calibration. 

Climate-driven changes in methane emis- 
sions could have preceded the observed atmo- 
spheric methane concentration change by no 
more than a decade, the approximate lifetime of 
methane in the atmosphere (24). Interpretation 
of the methane rise is complicated by evidence 
for two methane source regions during the tran- 
sition. Part of the increase in methane concen- 

The mismatch between model and observed gas isotopes in the range 14.55 to 14.62 ky B.P. is likely tration from the Last Glacial Maximum to the 
due to gravitational enrichment from transient firn thickening brought about by the increase in Bslling has been attsibuted to boreal sources 
snow accumulation, which was not included in the model. (21-23). During the -50-year interval in which 

methane concentrations were rising, we cannot 

Fig. 4. Plot of measured tiTSN,, 
= 815N - 840Ar/4, which is not 
affected by grwitational settling, 
compared with model results forced 
by 8". lo", and 12°C "step function" 
increases in surface temperature. Er- 
ror bars show quadrature sum of 
pooled RMS deviations of nitrogen 
and argon replicate measurements. 
Measurements made at URI and 
510 appear to have a -0.01 per mil 
systematic offset, equ~alent to 2OC. 
possibly due to a calibration error. 
We adopt an estimate of 9 2 3°C 
for the magnitude of the abrupt 
warming 

I"""""""""""""""""' 

SIO 

14.5 14.6 14.7 14.8 
Deduced gas age (ky BP) 

Table 1. Depths and deduced gas ages of inferred Balling Transition. 

Mid depth Deduced gas gxN* (per mil) CH4t Layer counting4 Deduced 
(4 age (ky 8.P.) (ppbv) age of ice (ky 8.P.) Aage (years) 

1821.16 14.672 0.524 + 0.001 492 + 11 
1820.55 14.655 0.538 2 0.002 499 + 11 
1820.36 14.650 15.513 863 
1820.17 14.645 0.596 + 0.006 542 + 15 

*Mean and standard deviation of duplicate analyses of separate pieces of ice from the same depth. ?Mean and 
standard deviation of replicate analyses of separate pieces of ice from the same depth (n = 4 for 1821.16 m and 1820.55 
m and n = 3 for 1820.17 m). §See (42). 

know the interpolar @ent be-e of time 
scale uncertainties (arising from the fact that the 
rapid transition in methane concentration is 
used to synchronize Antarctica and Greenland 
ice core time scales). Thus, no source attribu- 
tions based on the interpolar gradient are pos- 
sible within this period. For example, the abrupt 
increase in methane concentration between 
14.655 and 14.645 ky B.P. (Fig. 3) cannot be 
M y  attributed to a tropical climate event, 
because it is possible that this was the result of 
the boreal portion of the source increase. How- 
ever, some part of the entire methane concen- 
tration increase from 14.655 to 14.595 ky B.P. 
must have been tropical in origin; otherwise, the 
interpolar @ent would have been steeper 
than observed just after 14.595 ky B.P. (Fig. 2) 
(21-23,43). Thus, we infer that there must have 
been a change in tropical temperatures or pre- 
cipitation (or both) at some time within the 
interval 14.655 to 14.595 ky B.P. This brackets 
the possible time of the tropical climate event to 
within -20 to 80 years after the onset of the 
Greenland warming. 

Methane production might not respond 
instantaneously to environmental change, 
however. For example, it might take several 
decades for water tables to rise and fill pre- 
viously drained wetlands, or sustained organ- 
ic matter production might be required to 
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create the anoxia necessary for methane pro- 
duction. At least some immediate response of 
methane production to increased tropical 
temperature or precipitation is expected and 
probably inescapable, though. Soils become 
waterlogged and plant growth responds to 
precipitation on subannual time scales, and 
methane emissions from modern wetlands 
respond to changes in climate conditions on 
similar time scales (44,ZI). Thus, we take the 
absence of any substantial methane increase 
before 14.65 ky B.P. as an indication that the 
tropical climate change probably lagged 
Greenland warming by at least -20 years. 

The implication that high-latitude North At- 
lantic warming led tropical climate by several 
decades may provide a test for proposed mech- 
anisms of abrupt climate events. Two alterna- 
tive mechanisms may be imagined. In one sce- 
nario (the "North Atlantic trigger"), North At- 
lantic thermohaline overhuning abruptly deep- 
ened and intensified, drawing heat poleward 
and warming Greenland (49,  which warmed 
the tropics by some as yet poorly understood 
mechanism. Increased poleward heat transport 
might have reduced the Northern Hemisphere 
equator-to-pole temperature gradient, decreas- 
ing the dnving force for the winds (46). Slack- 
ening of the winds would have reduced oceanic 
upwelling, wind mixing, evaporative cooling, 
and the gyre circulation, leading to an abrupt 
warming of tropical and subtropical sea surface 
temperature (SST). Much evidence points to a 
sudden drop in wind speed at the time of the 
B~lling Transition, including records from lam- 
inated sediments in the Cariaco basin of Vene- 
zuela (15) and dust particle size and concentra- 
tion in GISP2 ice (47). Also, warmer North 
Atlantic SST has been shown in atmospheric 
model studies to produce strengthening of the 
Asian monsoon (27, 48), which may have 
warmed the tropics. In a second, speculative 
scenario (the "tropical trigger"), the tropics 
warmed first, perhaps because the temperature 
of upwelling water in the tropics crossed a 
threshold that caused the trovical ocean-atmo- 
sphere system to abruptly reorganize into a 
warmer state. In this scenario, the deepening of 
North Atlantic thermohaline overturning and 
warming of Greenland would be responses to 
tropical warming rather than primary causes. 
Our phasing data would appear to favor a North 
Atlantic trigger. 
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16°C Rapid Temperature 
Variation in Central Greenland 

70,000 Years Ago 
C. Lang,'" M. Leuenberger,'" J. Schwander,' S. Johnsen2s3 

Variations in  the 29N2/28N2 ratio of air bubbles trapped in  polar ice cores and 
their relation t o  variations of the '80/160 of the ice allow past surface tem- 
perature variations and ice age-gas age differences t o  be determined. High- 
resolution measurements of 29N2/28N2 in  Dansgaard-Oeschger event 19 
(around 70,000 years before the present) in ice from Central Greenland show 
that at the beginning of the event, the ice age-gas age difference was 1090 i 
100 years. Wi th the use of a combined firn densification, temperature, and gas 
diffusion model, the S180i,,-temperature coefficient a was determined t o  be 
0.42 ? 0.05 per m i l  per kelvin. This coefficient implies a mean surface tem- 
perature change of 16.0 kelvin (between 14.3 and 18.1 kelvin), which differs 
substantially from values derived from borehole temperatures and modern 
spatial S180i,,-surface temperature correlations. 

Dansgaard-Oeschger (DO) events are charac- (Greenland Ice Sheet Project 2) methane and 
terized by rapid increases in the stable oxygen S180,,, records, Schwander et al. suggested 
isotope composition of the ice [S1801ce ( I ) ]  in (on the basis of the calculated Aages) an a of 
ice cores of the last glacial period to high values 0.4 to 0.5 per mil/K for the DO events be- 
that persist for several hundred to several thou- tween 40,000 and 20,000 years before the 
sand years. When these increases were discov- present (yr B.P.) (7). Using the same ap- 
ered [in Camp Century ice (2)], it was not clear 
whether they reflected drastic changes in Arctic 
(or even Northern Hemispheric) climate, local 
effects, or stratigraphic disturbances in the core. 
Their climatic relevance was shown by their 
widespread geographic extent (3),  and they are 
now interpreted as warmer interstadial periods. 
Several attempts have been made to estimate 
these temperature variations, with the contem- 

proach with nitrogen isotope ratios, Severing- 
haus et al. (8)  obtained a value of about 0.30 
per mil/K for the transition at the end of the 
Younger Dryas cold period, in agreement 
with the borehole temperature studies. 

Here we present a reconstruction of the 
surface temperature change in Central Green- 
land during DO 19 (70,000 yr BP), based on 
high-resolution measurements of nitrogen iso- 

porary surface temperature-6180ice correlation, topes on the GRIP ice core. This reconstruction 
borehole temperature measurements, and dif- provides us with an estimate of the relation 
ferences between gas age and ice age (Aage) between temperature and S180,,, for a DO 
based on S180,re-methane and S15N-S180,,, event. We chose DO 19 because it is one of the 
correlations.  he-‘correlation of modem me; larger events during the glacial, with a S1801ce 
annual surface temperature and the mean change of $6.7 per mil (uncertainty of 0.05 per 
S180,,, of precipitation at various sites in mil). If the present-day spatial relation (a  = 
Greenland (spatial correlation) leads to a coef- 0.67 per m i K )  is applied to the S180i0 change, 
ficient, a (= AS180icJAT, where T is temper- a temperature shift of 10°C is expected. With 
ature), of 0.67 per mil/K (4). Deconvolutions of the glacial-Holocene borehole sensitivity (0.3 to 
borehole temperatures show that a may vary 
over climatic cycles, with similar values during 
the Holocene (a  = 0.53 to 0.67 per m i K )  and 
different values for the last glacial termination 
(a  = 0.3 to 0.33 per mil/K) (5, 6 ) ,  although no 
analogous conclusions can be drawn for the 
relatively short DO events. Studying the 
GRIP (Greenland Ice Core Project) and GISP2 

0.33 per mil/K), this S1801ce change would 
correspond to a far larger 20' to 22OC temper- 
ature shift. 

Because the isotope ratio of atmospheric 
nitrogen (SI5N) is constant over several hun- 
dred thousand years (9) ,  changes of this ratio 
in the air trapped in the ice reflect processes 
that occur in the firn. These are gravitational " ,  - 
enrichment of the heavier molecules at the 
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