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price signals should spur innovation, re- 
sulting in the development of further low- 
cost options not conGdered here (7). 

We calculated the abatement costs per Costs of Mu lt igreen house me,, ton of carbon for various carbon 

Reduction Targets for the USA 
emission and pricing options using the 
Second Generation Model (SGM) (8). In 
contrast to CHI costs, the carbon permit 
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Donald Wwbbles, Reid Harvey, Dina Kruger tive for C02 reduction (Fig. 1B) increase 

gradually and do not allow for zero-cost 

I n response to concern over the impact of 75% of CH., emitted as a result of human C02 abatement options (9). 
greenhouse gas emissions on the Earth's activities in the United States in 1995 (4). We use the C02 and CH4 abatement 
climate, the Kyoto Protocol sets emis- A significant amount of C& emissions costs per ton of carbon or equivalent in 

sion targets for 38 nations and the European for the United States, 3 1 MtC,, (3), or Fig. 1 to calculate the costs of meeting a 
Union. The targets are set in terms of an in- 17% of projected baseline emissions in GHG emission reduction target through 
terchangeable basket of greenhouse gases 2000 (Fig. lA), can be reduced with eco- both C02 and CH., reductions. Cost func- 
(GHGs), the two most important of which nomically justified options with no reduc- tions for each gas were developed by fit- 
are carbon dioxide (C02) and methane tion costs. These options are typically to ting to the integral of the cost curves. To 
(CK) (1). The costs of reducing non-C02 capture C& and to recover the cost of the calculate the optimal proportion of C02 to 
GHGs such as CH4 have previously been emission reduction technology by selling CH4 reductions for a specified reduction 
treated by assuming that (i) they are effec- the CH., or using it to displace other ener- in total C02-equivalent emissions, we 
tively zero compared with the costs of re- gy inputs. The net cost depends on a num- equated abatement costs per ton of carbon 
ducing C02, (ii) they are proportional to ber of assumptions, particularly the bal- or equivalent for each gas, as given by the 
C02 costs, or (iii) they are infiitely large. ance between energy and GHG control derivative of the cost functions. 
These assumptions have developed because prices (5, 6), which leads to uncertainty in We examine the cost of U.S. emission re- 
global emissions models do not have the the size of the "no reduction cost" area ductions for 2010, the midpoint of the 
level of detail necessary to resolve the shown in Fig. 1A. 2008-2012 Kyoto budget period, using two 
plethora of non-C02 GHG sources related When the initial no-cost options are ex- approaches. The first (Fig. 1C) is to calcu- 
to agriculture, waste disposal, and various hausted, abatement costs for CH., increase late the cost only for reductions fiom zero to 
industrial processes. Here we show that in- gradually up to 75 MtC,, or 40% of pro- 800 MtC,, the limit over which the costs in 
troducing CH4 into an abatement scheme jected C& emissions. Past 75 MtC,, costs Fig. 1, A and B, are valid. This approach 
using recently calculated costs for the Unit- climb almost vertically into a region where provides cost estimates for a range of poten- 
ed States (2) greatly affects the costs of tial reductions that span the Kyoto target for 
greenhouse gas control strategies. 200- the United States, here assumed to vary 

In the absence of any reduction or abate- A from 200 to more than 650 MtC, (1 0). 
ment efforts, U.S. methane emissions are 3 15' - If reductions in C02 alone are used to 
anticipated to fall from 179 MtC. (3) in - .  meet the target (Fig. lC), costs rise to 
1995to174~tc~in2~0,theorka186 1 ~ ~ 0 0 . ~ ~  G%* 1.24% of the GDP in 2010 (11) for reduc- 
MtC, by 2010, according to projections of ~di .-a tions of 800 MtC,. However, if both C02 
future population, gross domestic product 1 ! 50.*r and CH., emissions are controlled, the cost 
(GDP), energy production, and consump- \ is reduced by 0.02% of projected GDP for 
tion (2, 4). We use this projection as a base- , ,eqla the United States in 2010 for a reduction 
line to assess abatement costs per metric ka--b a 7'o of 200 M t C ,  rising to 0.3% or $28 billion 
ton of carbon equivalent (3) based on an Emission reduction (M- 

analysis of emission reduction technologies 500. - 1.4 
: B 

available for four major anthropogenic H m.' 7 
1.2 g (3 

sources of CH., in the United States: land- 
u a, fills; coal mining; natural gas production, 

processing, transmission, storage, and dis- f 1 m: tribution; and livestock manure. Together, . 0.4 
these sources accounted for approximately = 100- c+'mlo 

.0.2 
b - 7 . .p-,o 8 
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Fig. 1. Comparison of abatement cost curves for (A) CH4 and (B) COz in 2000 and 2010 (2,8). Costs 
are in 1992 dollars per unit as shown. Discontinuities in the CH4 cost curve are caused by the as- 
sumption that certain cost thresholds must be reached before specific technologies become cost ef- 
fective and come on line. Continuous COz cost curves are the result of market response to carbon 
permit fees. (C) Cost effectiveness of achieving a reduction of 0 to 800 MtC, (3) through COz 
alone in comparison with simultaneous C02  and CH4 emission reductions. Costs are sttown for the 
year 2010. Units are percentages of projected GDP for the United States (77), as indicated on the 
right-hand axis. Colored area shows the ratio of COz + CH4 to COz costs. As indicated on the left- 
hand axis, the ratio ranges from zero to -0.75, depending on the level of emission reductions. This 
corresponds to cost reductions of 100% to 25% relative to COz alone. 
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for emission reductions of 800 MtC,,-a 
significant savings, as illustrated by the ra- 
tio of C02 + CH4 costs to C02 only in 
2010 (colored area, Fig. 1C). Thus, the in- 
troduction of CH4 into a C02-only GHG 
emission reduction scheme will lower an- 
nual costs for the United States by at least 
40% for emission reductions of -100 
MtC,, and by -25 to 30% for reductions of 
200 MtC,, or greater. 

Methane emission reductions are most 
effective for smaller reduction w e t s ,  where 
mitigation technologies with low or zero net 
costs account for much of the abatement. 
However, as targeted reduction levels grow, 

Although C& reductions are attractive 
from a purely economic standpoint, there 
are ancillary benefits to reducing C& and 
other non-C02 GHGs. Most CH4 abate- 
ment technologies can be swiftly imple- 
mented, whereas capital stock turnover 
time can hinder the potential for rapid and 
cost-effective C02 emission reductions. As 
a result of its short atmospheric lifetime 
(response time) of only -12 years (1 7), 
CH4 concentrations will respond quickly to 
emission reductions, producing an irnrnedi- 
ate and significant impact on climate 
change. In contrast, the effect of reductions 
in C02 emissions, which are slowly re- 

affordable options for C& satu- 
- 

rate quickly. C02 reductions re- 
main the primary means of 
achieving significant long-term 
mitigation of climate change, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
and levels well beyond the Kyoto 
targets will likely be needed to followin# auurnptionr 
make a real difference. 

In the second approach, we = CO, 0.022 0.95 
address the cumulative costs of 
emission reductions that may 
be spread out from over a few 
years to a decade. We con- 
structed a emission re- Table 1. Cumulative abatement costs for COz + CH4 reduc- 

pathway for the United tions .in 2005 and 2010, if one assumes an exponential 
States, in which emission re- growth in emission reductions that begins at zero in 2000 
ductions begin in 2000 and and reaches 650 MtC, by 2010 (3, 776 Costs are given as a 
grow 650 percentage of projected CDP (77). Comparison with costs 
MtC, by 2010. This value rep- resulting from various assumptions show that the first as- 
resents the Kyoto target of a 7% sumption greatly overestimates the potential for CH4 to re- 
reduction below 1990 baseline duce costs, whereas the remaining assumptions underesti- 
emissions for the United States mate potential by up to 50%. 
(10). To ensure consistency, we 
used the "business-as-usual" baseline moved from the atmosphere over 50 to 200 
emission projections from which the costs years (1 7), will not be seen for some time. 
shown in Fig. 1, A and B, were derived It is clear that the addition of C& and 
(12). These are higher than the baselines other non-C02 GHG control options can 
used in (13), increasing the upper bound significantly reduce the costs of meeting 
on estimates of U.S. reductions under the U.S. emission reduction targets. Systematic 
Kyoto Protocol to 650 MtC,, (14). The to- work in the field of non-C02 GHG abate- 
tal cost of achieving a reduction of 650 ment costs has only just begun in United 
MtC,, over the period 2000-2010 is 1.1% States and a few other developed countries. 
of projected GDP if C02 is the only gas However, many of the cost-effective options 
being reduced, but only 0.78% of the GDP appropriate for the United States are appli- 
if both C02 and CH4 are reduced, a differ- cable worldwide. A pressing need remains 
ence of approximately $31 billion (Table for contributions to the task of quantifying 
1). For the first 4 years, costs are reduced non-C02 GHG abatement options and 
by 100% as CH4 abatement technology costs, as well as for a better understanding 
with net costs of zero accounts for all of factors that determine these costs. 
emission reductions. However. bv 2010 
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