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Subtropical North Atlantic 
Temperatures 60,000 to  

30,000 Years Ago 
Julian P. Sachs" and Scott J. Lehman 

A reconstruction of sea surface temperature based on alkenone unsaturatio; 
ratios in sediments of the Bermuda Rise provides a detailed record of subtropical 
climate from 60,000 to  30,000 years ago. Northern Sargasso Sea temperatures 
changed repeatedly by 2" to  5OC, covarying with high-latitude temperatures 
that were previously inferred from Greenland ice cores. The largest temperature 
increases were comparable in magnitude to the full glacial-Holocene warming 
at the site. Abrupt cold reversals of 3" to 5OC, lasting less than 250 years, 
occurred during the onset of two such events (Greenland interstadials 8 and 12), 
suggesting that the largest, most rapid warmings were especially unstable. 

Annually dated records of isotope paleotem- 
perature from Greenland ice cores depict a 
highly volatile climate during the last glacial 
period [80,000 to 10,000 years ago (ka)] (1). 
Many of the largest temperature excursions oc- 
curred from 60 to 30 ka d~uing marine isotope 
stage (MIS) 3, an interval characterized by in- 
terrnediate ice sheet size, high-latitude radiation 
receipts, and atmospheric CO, concentrations. 
Similar excursions are seen in faunal records of 
high-latitude sea surface temperature (SST) (2) 
and geochemical records of deep ocean venti- 
lation (3, 4). consistent with numerical model- 
ing results shaming a large dependence of high- 
latitude sea and air temperatures on the rate and 
mode of ocean thernohaline circulation (5). 
There are also indications of related SST 
change at lower latitudes (6-8), but these are 
primarily based on planktonic foraminifera1 iso- 
tope records that may be nlfluenced by factors 
other than temDerahlre. The SST of the warm 
ocean is nonetheless expected to play a crucial 
role in ainpllfylng and propagating cllmate 
change because the paiflal pressure of water 
vapor, an abundant and effective greenhouse 
gas. depends exponentially on temperature (9). 
Here, we present alkenone-derived SST records 
from Berrnuda &se sediments in the northwest 

Sargasso Sea and from high-deposition rate 
sites in the southm~est Sargasso Sea in order to 
evaluate the temperahre history of the subtrop- 
ical Atlantic Ocean during MIS 3. 

The Bermuda Rise is a sediment drift 
deposit northeast of the islands of Bermuda. 
Lateral sediment focusing within the North 
American Basin augments deposition at the 
site (lo),  so that late Quatemaiy sedimenta- 
tion rates range from 10 to 200 cm:1000 
years (1 ky) ( I I ) ,  some 5 to 100 tiines the 
open ocean average. As a result: Bem~uda 
Rise sediments provide exceptional resolu- 
tion in time. Core MD95-2036 (from 
33"41.444'N, 57O34,548'W, at a m7ater depth 
of 4462 m) is 52.7 in in length and contains 
sediments of Holocene through penultimate 
glacial (MIS 6) age (11). We determined 
SSTs by alkenone paleothermometiy (12) in 
contiguous 1- or 2-cm intewals throughout 
the 12-in section of the core col-responding to 
MIS 3. Sedimentation rates averaged 30 cinlky 
during the interval, so that single samples rep- 
resent 33 to 67 years of dep6sition on average. 

Lipids were extracted ,froin 1 to 4 g of 
freeze-dried sediment with a;presswrized fluid 
extractor: and alkenone abundances were quan- 
tified by gas chromatography with flame-ion- 
ization detection (13). Down-core results are 
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of 50 samples per week with an external 
precision of 0.0058 Uk;, units (0.17"C) (IS). 
Dispersion of duplicate measurements in the 
interval from 2750 to 3000 cm exceeds the 
external precision because of a contamination 
problem that was encountered and eliminated 
early in our study (1 6). 

Reconstructed SSTs ranged from - 15.5" to 
21°C during MIS 3 and are associated with 
changes in sediment lightness (Fig. l), a proxy 
for the CaC03 content of the sediment at this 
location that has been previously correlated to 
the Greenland record of paleotemperature (11). 
Millennium- to cenhuy-scale SST minima (sta- 
dials) were typically between 15.5" and 17"C, 
and maxima (interstadials) were between 19" 
and 21°C. The mean warming from stadial 
minima to interstadial maxima for 12 millenni- 
um-scale SST oscillations was 3.1°C (a range 
of 1.7" to 5.3"C). In addition, stadial minimum 
temperatures reached successively colder levels 
during MIS 3, from 17.3"C before interstadial 
15 (IS-15) to 15.3"C before IS-5. The large SST 
changes documented in core MD95-2036 are 
consistent with -1-per mil millennial varia- 
tions in planktonic foraminifera1 6180 mea- 
sured in nearby core KNR31-GPC5 from the 
Bermuda Rise (8), although there are notable 
differences in the two proxy records that sug- 
gest either an important salinity influence on 
the planktonic 6180 (17) or changes in the 
season or depth of foraminiferal calcification. 

Our temperature estimates are largely insen- 
sitive to the regression relation used to convert 
Uk;, values to SST. For example, a calibration 
from a recent global compilation of core-top 
and contemporary mean annual SSTs (18) 
yields results that are nearly identical to those 
we obtained using a relation (12) based on 
culture experiments (14). In addition, measure- 
ments of box-core samples spanning the past 
2500 years of sedimentation at the Bermuda 
Rise yield an average SST of 21.8" + 0.5"C 
(n = 49) with the culture relation (19). Consid- 
ering that this intewal includes the Little Ice 
Age cold excursion (20), the 2500-year average 
is close to the modem annual mean and pro- 
duction-weighted SSTs at 0 m of 22.8" and 
22.5"C, respectively (21). Changes in the con- 
tribution of fine-grained sediment to the site 
have not influenced measured Uk;, values (22). 

Reconstructed millennium- and cenhuy- 
scale SST oscillations at the Bermuda Rise are 
unexpectedly large in light of climate proxy 
data (23) and numerical models (24) indicating 
2" to 5°C of warming between full glacial and 
present-day or Holocene-average temperatures 
in the region. In order to determine whether 
such variations were a local response to the 
movement of an oceanographic front or were 
associated with more widespread temperature 
change, we also measured Uk;, ratios across 
selected events in cores from the Blake 
(KNR140-JPC27; from 30°01'N, 73"36'W, 
water depth of 3975 m) and Bahama (KNR3 1- 

GPC9; from 28"15'N, 74"26'W, water depth of and IS-14 at both locations (25), equivalent to 
4758 m) outer ridges, in the southwestem Sar- one-half the warming observed at the Bermuda 
gasso Sea (Fig. 2). SSTs rose abruptly by 2" to Rise (Fig. 1). Absolute SSTs in the southwest- 
2.5"C during the transitions into IS-8, IS-12, em Sargasso Sea were higher than those at the 

MIS 2 MIS.3 ~ 1 ~ 4  MIS 5 MIS 6 , 1 
30 

0 loo0 moo 3WO 4WO 5WO 

Fig. 1. Alkenone-derived SSTs (red circles) and sediment lightness values (a proxy for the CaCO, content 
of the sediment) (black lines) shown to  depth in Bermuda Rise core MD95-2036, with an expanded view 
of results for MIS 3 (60 to  30 ka). Uk;, values were converted to  SST with the equation @I3, = 
0.034T + 0.039 (12, 14). The precision of the analysis ( l a  error bar) is 0.00585 @' , units or 0.17OC. 
Scatter between 2750 and 3000 on is the result of contamination by partially coejuting compounds 
(76). Warm interstadial events (numbered in blue) were identified on the basis of visual correlation to  
the ClSP2 isotope temperature record (1). Two ice-rafted debris (IRD) maxima in Bermuda Rise 
sediment cores, corresponding t o  Heinrich events 4 and 5 (H4 and H5) (8), are also shown (vertical 
dashed Lines). 

Fig. 2. Alkenone-derived SSTs (red circles) and CaCO, content of the sediment (black line) for two 
sites in the southwestern Sargasso Sea. The CaCO content of the sediment was used t o  identify 
the position of interstadial events (blue numbers) $5). SSTs rose abruptly at the onset of 15-7 and 
15-8 at the Blake Outer Ridge (core KNR31-CPC9; 2801S1N, 74O26'W) and at the onset of 15-11, 
IS-12, and 15-14 at the Bahama Outer Ridge (core KNR140-JPC27; 30°01'N, 73'36'W). The 
amplitude of warming was about half that at the Bermuda Rise in the northern Sargasso Sea. 
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Bermuda Rise throughout the studied intervals. 
At the Blake Outer Ridge, stadial cool episodes 
were warmer by lo  to 1 S°C, and at the Bahama 
Outer Ridge, the stadials were warmer by 2" to 
3.5"C. In contrast, maximum interstadial tem- 
peratures at both southwestern locations were 
within 0.5" to l.O°C of those at the Bermuda 
Rise for coeval events. The larger divergence of 
lower latitude SSTs from those at the Bermuda 
Rise dunng cold periods suggests that dimin- 
ished poleward heat transport contributed to 
stadial cooling, an expected consequence of 
weakened thermohaline circulation (26). SST 
relations among these study sites thus support 
the interpretation of Bermuda Rise SSTs in 
terms of a regional climatic signal rather than a 
localized response to the movement of an 
oceanographic front. 

To place SST results fkom core MD95-2036 
on an estimated age scale, we correlated varia- 

tions in sediment lightness with weight-percent 
CaCO, variations in core -1-GPC5 (cor- 
relation coefficient r = 0.90), previously dated 
with radiocarbon and oxygen isotopic stage 
boundaries (3). However, this method produced 
ages for the SST events that were 2000 to 5000 
years older than their apparent counterparts in 
Greenland paleotemperature (6180 of ice, 
6180icJ records, probably due to radiocarbon 
dating errors associated with carbonate dissolu- 
tion and poor calibration and to uncertainties in 
the SPECMAP age scale (27). We therefore 
developed an alternative age model by maxi- 
mizing the correlation between Bermuda Rise 
SSTs and layer-counted variations in Greenland 
6180i,. Using 146 tie points, we obtained a 
correlation coefficient of 0.83 between the two 
series (28). This correlation results in a linear 
relation of amplitude between the two paleo- 
temperature records (Fig. 3A); all major varia- 

Fig. 3. (A) Bermuda Rise SSTs (red circles) and central Greenland 8l8Oi, (blue diamonds) for MIS 
3 on the GlSP2 ice core time scale (28). The position of IRD peaks associated with Heinrich events 
4 and 5 in the sediment core is shown for stratigraphic reference (dashed vertical lines). Cold 
reversals of 3" to S°C occur during the onset of (B) IS-8 and (C) IS-12 in less than 250years. (D) 
High instantaneous rates of sedimentation (black line) of 100 to 1000 cmlky characterize cold 
stadial periods and the transitions into intentadials, and intentadial periods are characterized by 
lower sedimentation rates of 3 to 10 cmlky. The sampling interval was 2 cm before 47.2 ky B.P. 
(dashed vertical line) and 1 cm afterward. The interval of time represented by each sample (green 
crosses) varies from -1 to 20 years during stadial periods to 100 to 300 years during interstadials. 

tions in the ice core are observed at the Bermu- 
da Rise. 

Although this age model lacks absolute 
chronologic control, on the basis of the linear 
covariation of millennium- and century-scale 
features, we reason that it provides the best 
possible estimate of relative age. We know of 
no mechanism by which to delay the climate 
signal while preserving the linear relation of 
amplitude for both brief and long-lasting events 
(Fig. 3A). Furthermore, because the heat capac- 
ity and mixing time of the atmosphere are small 
with respect to those of the ocean, the atme 
spheric adjustment to such large oceanic chang- 
es is expected to be nearly instantaneous, on the 
order of days to years. Absolute uncertainty of 
the time scale is approximated by the error 
associated with counting annual layers in the 
Greenland Ice Sheet Project 2 (GISP2) ice core, 
which is 5% (29), or 1500 to 3000 years in MIS 
3. Relative uncertainty of the SST chronology 
is 10 to 100 years during stadial cool episodes, 
when inferred resolution and sedimentation 
rates (Fig. 3D) are high, and 100 to 1000 years 
during interstadial warm periods, when inferred 
resolution and sedimentation rates are low (30). 

The inferred amplitude lock of the SST and 
6180ic, series (Fig. 3A) suggests that Bermuda 
Rise SST variations were one-third to one-half 
of Greenland air temperature variations, de- 
pending on the 6180i,-temperature relation 
used to estimate isotopic paleotemperature (31). 
The SST record also contains abrupt features 
not yet identified in the ice core. The most 
important of these are large (3" to 5°C) oscil- 
lations that interrupt rapid warming at the on- 
set of IS-8 and IS-12 (Fig. 3, B and C). These 
events probably occurred entirely within the 
stadial-interstadial transitions marked by 
6180i, in GISP2 and Greenland Ice Core 
Project (GRIP) ice cores, a period of not more 
than 250 years (28). Estimated rates of sedi- 
mentation, as determined by correlation to 
GISP2, rose during these transitions (Fig. 3D), 
whereas associated SSTs sank to minima that 
were substantially colder than preceding stadial 
temperatures (Fig. 3B). We thus speculate that 
transitional cooling episodes were associated 
with enhanced meltwater and iceberg delivery 
of sediment to the North Atlantic Basin during 
Heinrich events 5 and 4 (at the onsets of IS-12 
and IS-8, respectively) (2) and consequent 
meltwater suppression of North Atlantic ther- 
mohaline circulation (4, 32). A limited number 
of benthic foraminifera1 Cd/Ca measurements 
fkom IS-8 in core MD95-2036 and additional 
Cd/Ca and 613C measurements fkom correlative 
levels in core -1-GPC5 support dimin- 
ished rates of North Atlantic Deep Water for- 
mation during Heinrich event 4 (8). Similarly 
abrupt climatic shifts and deep ocean changes 
have been previously i n f d  in association 
with this event in both the subpolar North At- 
lantic (2, 32) and the western equatorial Atlan- 
tic (7). 
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Our results demonstrate that large millenni­
um- to century-scale changes in SST were not 
restricted to the polar and subpolar North At­
lantic, but extended well into the subtropics. 
Indeed, rapid SST changes in the northern and 
southwestern Sargasso Sea (2° to 5°C and 1° to 
2.5°C, respectively) were as large or larger than 
full glacial-Holocene mean annual SST differ­
ences reconstructed by the CLIMAP (Climate: 
Long-Range Investigation, Mapping, and Pre­
diction) project (23) with foraminiferal transfer 
functions. They are also comparable to alk-
enone-derived SSTs from Bermuda Rise core 
KNR31-GPC5, indicating a deglacial tempera­
ture increase of 5.4°C (from 16.5° to 21.9°C) 
(33). Amplitudes of the largest MIS 3 SST 
events in the subtropical North Atlantic have a 
distribution similar to that observed in a number 
of coupled atmosphere-ocean models simulat­
ing SSTs for Last Glacial Maximum versus 
modern boundary conditions (24). The pres­
ence of such large SST variations over the 
warm ocean may help to explain observations 
of abrupt climate events at locations distant 
from the subpolar North Atlantic and 
Greenland [for example, (6, 34)] through 
direct thermal forcing and the temperature-
water vapor feedback. 
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