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bone, allowing or encouraging topological 
change, and resealing the break (i). The en­
zymes are efficient because DNA breakage is 
accompanied by covalent union between pro­
tein and DNA to create an intermediate that is 
resolved during the resealing step. This 
mechanism, although elegant, also makes to­
poisomerases potentially dangerous. If the 
resealing step fails, a normally transient break 

Yeast Gene for a Tyr-DNA 
Phosphodiesterase that Repairs 

Topoisomerase I Complexes 
Jeffrey J. Pouliot, Kevin C. Yao, Carol A. Robertson, Howard A. Nash 

Covalent intermediates between topoisomerase I and DNA can become dead­
end complexes that lead to cell death. Here, the isolation of the gene for an 
enzyme that can hydrolyze the bond between this protein and DNA is described. 
Enzyme-defective mutants of yeast are hypersensitive to treatments that in­
crease the amount of covalent complexes, indicative of enzyme involvement in 
repair. The gene is conserved in eukaryotes and identifies a family of enzymes 
that has not been previously recognized. The presence of this gene in humans 
may have implications for the effectiveness of topoisomerase I poisons, such 
as the camptothecins, in chemotherapy. 
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in DNA becomes a long-lived disruption, one 
with a topoisomerase protein covalently joined 
to it. Unless a way is found to restore the 

Fig. 1. Molecular genetics of tyrosyl-DNA phos- 
phodiesterase (TDP) activity. (A) Enzymatic 
transformations. The jagged line represents 
the single-strand 18-mer oligonucleotide of 
oHN279Y. TDP activity removes the tyrosine 
from this chemically synthesized substrate (5) 
and leaves a 3'-terminal phosphate. In crude 
extracts, subsequent action by .unidentified 
phosphatases can produce a 3'-terminal hydroxyl 
(B) Denaturing gel analysis of TDP activity in 
yeast strains. Incubations with 5'-radiolabeled 
oHN279Y were for 12 min as described (5) with 
buffer (lane 1) or extract (150 pg/ml) from the 
following strains: HNYlO2 and KYY337 (lanes 2 
and 3); El7 and E6, two haploid segregants de- 
rived from KYY337 after four rounds of back 
crossing (lanes 4 and 5); HNY243 and HNY244, 
ra&hisG derivatives of HNYIOZ and E6 (lanes 6 
and 7); HNY244 containing plasmid pL10-13 
(lane 8); and HNY383, a derivative of HNY243 
with a disruption of the gene for ORF YBR223c 
(lane 9). The positions of the labeled substrate (Y) 
and oligonucleotides terminated by phosphate (P) 
and hydroxyl(0) residues are marked. Total TDP 
activity is best judged as the ratio P + Or/ + P + 
0. (C) TDP activity in E. coli. Radiolabeled 
oHN279Y was incubated as above with buffer 
(lane 1) or sonic extracts (10 ng/ml) of strain 
BLZl(DE3) transformed either with plasmid vec- 
tor (lane 2) or vector plus the coding region of 
YBR223c (lane 3). wt, wild type. 

continuity of DNA, the cell will die. 
In virtually all topoisomerases, the heart 

of the covalent complex is a phosphodiester 
between a specific tyrosine residue of the 
enzyme and one end of the break (the 3' end 
for eukaryotic topoisomerase I and the 5' end 
for topoisomerases I1 and 111). The high-en- 
ergy nature of this bond normally ensures the 
resealing step. But failure of resealing is 
markedly increased by several drugs, such as 
camptothecin (CPT), a promising anticancer 
agent that specifically targets eukaryotic to- 
poisomerase I (2). Protein-linked breaks also 
accumulate when topoisomerases act on 
DNA containing structural lesions such as 
thymine dimers, abasic sites, and mismatched 
base pairs (3). To the extent that such lesions 
arise during the normal life of a cell, topoi- 
somerase-associated damage may be un- 
avoidable. 

Repair of topoisomerase covalent com- 
plexes is of obvious value to the cell, but the 
subject remains largely unexplored. A plau- 
sible pathway invokes hydrolysis of the bond 
joining the topoisomerase to DNA; release of 
the topoisomerase would then permit the 
cleaved DNA to undergo conventional modes 
of break repair (4). Although no such hydro- 
lysis has been reported for covalent complex- 

Fig. 2. Influence of TDP activity on cell survival 
after drug treatment. The indicated yeast 
strains were exposed to drug for 24 hours, 
diluted, and plated (9). Killing by the drug is 
calculated from the relative change in colony- 
forming units (CFUs), the number of colonies 
obtained from a portion of the culture after 
drug treatment divided by the number in a 
portion of the starting culture. (A) CPT was 
added at 100 pg/ml to strains HNYlOZ, E6, 
HNY243, HNY244, and HNY383 (bars 1 to 5). 
(B) MMS was added at 0.01% to strains 
HNY243 and HNY244 (bars 1 and 2). (C) CPT 
was added at 100 pg/ml to strain HNY244 
containing either a control plasmid, pX1, or 
plasmid pL10-13 (bars 1 and 2). 

es of topoisomerases I1 or 111, we described 
(5) an activity that specifically hydrolyzes the 
type of bond found in complexes between 
DNA and topoisomerase I (Fig. 1A). The 
specificity of this activity and its conserva- 
tion from yeast to man suggested that it might 
be part of a repair pathway. But without 
specific inhibitors or mutants, no assessment 
of its function could be made. We now report 
the identification of the gene encoding this 
enzyme and the demonstration of its impor- 
tance for topoisomerase metabolism. 

Crude extracts of the yeast Saccharomy- 
ces cerevisiae contain 'readily detectable 
amounts of tyrosyl-DNA phosphodiesterase 
(TDP) activity (5). We disrupted (6) four 
yeast genes-RAD9, RAD17, RAD52, and 
TOPI-that we suspected might encode or 
control the activity, but none of the disrup- 
tions affected activity in extracts (Fig. 1B) 
(7). To search for previously unknown genes, 
we assayed extracts from colonies of chemi- 
cally mutagenized yeast (8); this screen yield- 
ed a single strain, KYY337, with very low 
TDP activity (Fig. 1B). In back crosses to the 
parental line, the enzyme defect appeared to 
reflect a single mutation (denoted here as 
enz). That is, when a diploid between the 
parental line and a defective line was sporu- 
lated and haploid colonies were assayed at 
random (8), about equal numbers were found 
with normal and with low enzyme activity. 
The activity of representative colonies after 
four rounds of back crossing is shown in Fig. 
1B. 

To assess the role of TDP activity in 
repair of topoisomerase damage, we com- 
pared strains for sensitivity to killing by CPT 
(9). Despite the marked difference in TDP 
activity, the parental line and the back- 
crossed enz mutant were both insensitive to 
CPT (Fig. 2A, bars 1 and 2). We reasoned 
that, as for other kinds of damage (4), repair 
of topoisomerase lesions might take place by 
multiple pathways. If so, a genetic back- 
ground in which some of these pathways 
were disabled might reveal a role for TDP 
activity. Indeed, when combined with a dis- 

fad9 topl lad9 topl en+ 

A 4  

Fig. 3. Cell growth with a toxic topoisomerase. 
Strains HNY243 top7A and HNY244 top7A 
were transformed with derivatives of plasmid 
YCpCAL1 bearing either a wild-type TOP7 gene 
or the Thr722 + Ala (T722A) mutant (77). 
These strains were serially diluted and spotted 
on uracil-deficient minimal plates containing 
either 2% glucose (Clu) or galactose (Gal) to 
repress or induce the plasmid-borne gene. 
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ruption of the RAD9 gene, the CPT sensi- 
tivity of the low activity mutant (strain 
HNY244), was increased by a factor of 12 
relative to the rad9 derivative of the parental 
strain, HNY243 (Fig. 2A, bars 3 and 4); the 
same difference was seen after the mutant 
had undergone two additional rounds of back 
crossing (7). 

The RAD9 gene is needed both for the 
operation of DNA damage checkpoints and 
for expression of a set of DNA damage- 
inducible genes (10). The loss of these func- 
tions in a rad9 mutant not only increases the 
sensitivity of the cell to killing by CPT, it 
apparently leaves TDP activity as a principal 
remaining source of repair of CPT-induced 

damage. Under these circumstances, killing 
by CPT still reflects topoisomerase trapping; 
when the TOPl gene of HNY244 was dis- 
rupted, survival increased nearly 1000-fold 
(7). The mutant line was not sensitized to all 
sources of DNA damage; killing by methyl 
methane sulfonate (MMS), an alkylating 
agent, was indistinguishable in HNY243 and 
HNY244 (Fig. 2B). 

Mutations in yeast topoisomerase I have 
been isolated that depress rejoining and 
thereby lead to accumulation of covalent 
complexes (11). We used these mutants for 
an independent test, one without recourse 
to drugs and the attendant questions con- 
cerning uptake, of the importance of TDP 

activity for in vivo repair of topoisomerase- 
DNA adducts. Indeed, overexpression of a 
mutant (but not the wild-type) TOPl gene 
was more toxic to the strain with low TDP 
activity than to its control (Fig. 3). A sec- 
ond mutant, toplR517G, with a similar de- 
fect (II),  was similarly hypertoxic in the 
strain with low TDP activity (7). 

From a library of yeast genomic frag- 
ments screened (12) for the ability to im- 
prove the CPT resistance of HNY244 and 
restore its TDP activity, we obtained plas- 
mid pL10-13 (Figs. 1B and 2C). Several 
subclones of the -8-kb insert in this plas- 
mid retained full activity (7). The smallest 
of these subclones contains a single open 
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reading frame (ORF). YBR223c. a proteln 
of 544 amino a c ~ d s  and relat~ve molecular 
mass - 62.000. Into strain HNY243. n e  
generated by polynlerase chain reaction 
(PCR) (13) a disruption that removed all 
but the first 32 anlino acids of the ORF. 
The resulting strain had an enzylnatic de- 
fect and CPT sensitivity very similar to that 
of HNY244 (Figs. 1B and 2A), indicating 
that YBR223c is involved in TDP activity. 
To distinguish whether YBR223c encodes 
or controls TDP activity. lve introduced a 
histidine-tagged version (14) into Esche- 
iichicr coli, \vhich by itself has no detect- 
able TDP activity. Induction of bacteria 
bearing this construct (but not a control 
construct) apparently resulted In masslve 
overproduction of TDP because crude ex- 
tracts of such cells had a specific activity 
> 10,000 tiines as high as that of extracts 
from a standard yeast strain (Fig. 1; B and 
C). Moreover, most of the induced activity 
could be bound to a tag-specific column; 
specific elution released >75% of the 
bound activity, resulting in a fraction rvith a 
single Coonlassie-stainable band of the ex- 
pected molecular size (7) .  We collclude 
that YBR223c encodes the enzyme and 
ha\ e accordinglq renamed its gene TDPl .  

Database sealches faded to l e ~ e a l  ho- 
mology between TDPl and any genes of 
knorvn function. Even individualized coin- 
parisons to ~notifs identified in various 
phospl~odiesterases and phosphatases \yere, 
at best; marginal. On this basis. we con- 
clude that TDPI encodes a previously un- 
known enzyme. However. eukaryotic (but 
not prokaryot~c) databases contain se\ era1 
unannotated sequences that match TDP 1. a 
finding co~lsistent n ~ t h  the d~s t r ibu t~on  of 
enzyme activity (5). The conlplete genome 
sequence of the nematode Ccreizoi~1ziibcliti.i. 
elrgaizs contains a single ORF with sub- 
stantial similarity to TDP1. Probing ex- 
pressed sequence tag (EST) databases \ijith 
the yeast and nelnatode proteins revealed 
Illany ~ ~ n a i l l b i g u o ~ s  nlatches (Fig. 4). In 
Inouse and man; there are several EST en- 
tries that can be aligned to make up a single 
ORF \vit11 substantial similarity to the car- 
boxyl-terminal half of TDP1. To see if the 
homology extends further. rve carried out a 
PCR on a collection of human cDNAs 
(Marathon-Ready; Clontech Laboratories; 
Palo Alto. CA) wit11 a primer complemen- 
tary to the human EST sequence and a 
primer complementary to the tag affixed to 
the 5 '  end of the cDNAs. We cloned the 
resulting 5'-RACE (rapid amplification of 
cDNA ends) products. the sequence of one 
of the longest clones (Fig 4) a l~gns  lie11 to 
most of the 5 '  half of the leas t  and nenlo- 
tode ORFs We conclude that the TDPl 
gene 1s highlq consel\ ed 111 eukalq otes 

Isolat~on of the TDPl gene a111 alloa 

studies of the enzymology and cell biology 
of a kind of DNA repair that has previously 
been hard to analyze. The gene also pro- 
vides a potential tool to impro\-e chemo- 
therapy wit11 camptothecins and other topo- 
isoinerase I poisons. Although these are 
promising anticancer drugs: their value is 
often limited by resistance of tumor cells or 
sensitivity of nontumor cells (or both). Re- 
pair of the topoisomerase lesion is likely to 
be one of the factors that determine the 
level of cellular sensitivity to topoisomer- 
ase poisons (15) .  With the TDPI gene in 
hand, one can readily assess the expression 
of this enzyine in individual patients and 
possibly predict the likelihood of therapeu- 
tic success. Moreover. if genetic or bio- 
clleillical techniques can be used to alter 
enzyme activity. the efficacy and safety of 
the drugs may be improved. 
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