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Although cancer classification has improved over the past 30 years, there has 
been no general approach for identifying new cancer classes (class discovery) 
or for assigning tumors to known classes (class prediction). Here, a generic 
approach to cancer classification based on gene expression monitoring by DNA 
microarrays is described and applied to human acute leukemias as a test case. 
A class discovery procedure automatically discovered the distinction between 
acute myeloid leukemia (AML) and acute &mphoblastic leukemia (ALL) without 
previous knowledge of these classes. An automatically derived class predictor 
was able to determine the class of new leukemia cases. The results demonstrate 
the feasibility of cancer classification based solely on gene expression moni- 
toring and suggest a general strategy for discovering and predicting cancer 
classes for other types of cancer, independent of previous biological knowledge. 

The challenge of cancer treatment has been to 
target specific therapies to pathogenetically 
distinct tumor types, to maximize efficacy 
and minimize toxicity. Improvements in can- 
cer classification ha\-e thus been central to 
advances in cancer treatment. Cancer classi- 
fication has been based primarily on morpho- 
logical appearance of the tumor, but this has 
serious limitations. Tumors with similar his- 
topathological appearance can follow signif- 
icantly different clinical courses and show 
different responses to therapy. In a few cases; 
such clinical heterogeneity has been ex- 
plained by dividing mo~yhologically similar 
tumors into subtypes with distinct pathogen- 
eses. Key examples include the subdivisioll 
of acute leukemias, non-Hodgkin's lympho- 
mas, and childhood "small round blue cell 
tumors" [tumors with variable response to 
chemotherapy (1) that are now n~olecularly 
subclassified into neuroblastomas, rhabdo- 
inyosarcoma, Ewing's sarcoma; and other 
types (2)]. For many more tumors, important 
subclasses are likely to exist but have yet to 
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be defined by inolecular markers. For exam- 
ple; prostate. cancers of identical grade can 
have widely 1-ariable clinical courses, from 
indolence over decades to explosive growth 
causing rapid patient death. Cancer classifi- 
cation has been difficult in part because it has 
historically relied on specific biological in- 
sights, rather than systematic and unbiased 
approaches for recognizing tumor subtypes. 
Here we describe such an approach based on 
global gene expression analysis. 

We dix-ided cancer classification into two 
challenges: class discovery and class predic- 
tion. Class discovery refers to defining pre- 
viously unrecognized tumor subtypes. Class 
prediction refers to the assignment of partic- 
ular tumor san~ples to already-defined class- 
es, which could reflect current states or filture 
outcomes. 

We chose acute leukemias as a test case. 
Classification of acute leukemias began with 
the observation of variability in clinical out- 
come (3) and subtle differences in nuclear 
molphology (4). Enzyme-based histochemi- 
cal analyses were introduced in the 1960s to 
demonstrate that some leukemias were peri- 
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4LL) or from myelold plecursors (acute my- 
eloid leukenua. AML) T h ~ s  classification 
mas fi~rther solidified by the dehelopment In 
the 1970s of a~lt~bodies recognlzlng either 
lympho~d or myelold cell surface molecules 

acute leukemia have been found to be asso- 
ciated with specific chromosomal transloca- 
tions-for example, the t(1212 l)(p13;q22) 
translocation occurs in 25% of patients with 
4LL,  whereas the t(8;21)(q22;q22) occurs in 
15% of patients with AhlL (7). 

Although the distinction between AML 
and 4 L L  has been well established, no single 
test is currently sufficient to establish the 
diagnosis. Rather, current clinical practice 
illvolves an experienced hematopathologist's 
interpretation of the tumor's molphology, 
histochemistry, imn~unopl~enotyping; and cy- 
togenetic analysis, each performed in a sep- 
arate, highly specialized laboratory. Although 
usually accurate; leukemia classification re- 
mains imperfect and errors do occur. 

Distinguishing ALL from , m L  is critical 
for successful treatment; chemotherapy regi- 
mens for ALL generally contain corticoste- 
ro~ds. \ mcllstine. methohexate, and L-asparagi- 
nase, whereas most XVIL reglmens rely on a 
backbone of daunorubic~n and cytarabine (8)  
Although rem~ssions can be acl~iex ed using 
ALL therapy for AML (and vice xersa). cure 
rates are markedly diminished, and unwarsant- 
ed toxicities are encountered. 

We set out to dex-elop a more systematic 
approach to cancer classification based on the 
simultaneous expression monitoring of thou- 
sands of genes using DNA microarrays (9): It 
has been suggested (10) that such inicroar- 
rays could provide a tool for cancer classifi- 
cation. Microarray studies to date (11); how- 
ever, have prin~arily been descriptive rather 
than analytical and have focused on cell cul- 
ture rather than primaly patlent material, in 
n hich genetic nolse n11g11t obscure an under- 
lying reproduc~ble expression pattern 

We began w ~ t h  class predict~on How 
could one use an initla1 collect~on of samples 
belong~llg to Iu~omn classes (such as AML 
and ALL) to create a "class predictol" to 
class~fy nev,, unknonn samplesVn e dex el- 
oped an analyt~cal method and first tested ~t 
on distinctions that are easily made at the 
ino~phological level. such as distinguishing 
normal kidney from lenal cell calcinoma 
(12) Yi7e then tuined to the mole challenging 
ploblem of d~stingu~shing acute leukemias 
nhose appearance is highly sinlilar 

Our ~ n i t ~ a l  leukemia data set cons~sted of 
38 bone marrow samples (27 ALL, 11 4ML) 
obtained fiom acute leukem~a pat~ents at the 
tline of diagnos~s (13) R N 4  prepared from 
bone manon mollonuclear cells was h y b ~ ~ d -  
ized to 111gh-dens~ty ol~gonucleot~ue mlcloar- 
lays, ploduced by Affymetlix and containing 
p~obes for 6817 human genes (14) Fol each 
gene, we obtained a quantitative expressioil 
level. Samples were subjected to a priori 
quality control standards regarding the 
amount of labeled m T 4  and the quality of the 
scanned microarray image (15). 

?These authors contributed equally t o  this work. (6). Most recently, particular subtypes of The first issue was to explore whethe~ 
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there were genes whose expression patten1 
was strongly coi-related with the class distinc- 
tion to be predicted. The 6817 genes were 
sorted by their degree of correlation (1 6). To 
establish whether the observed correlations 
\\ere stronger than would be expected by 
chance. we developed a method called 
"neighborhood analysis" (Fig. 1A). Briefly, 
one defines an "idealized expression pattern" 
corresponding to a gene that is uniformly 
high in one class and uniformly 10x7 in the 
other. One tests whether there is an uilusually 

high density of genes "nearby" (that is, sim- 
ilar to) this idealized pattern, as compared to 
equix-alent raildorn patterns. 

For the 38 acute leukemia samples, neigh- 
borhood ailalysis showed that roughly 1100 
genes were more highly correlated with the 
AML-ALL class distiilction than would be 
expected by chance (Fig. 2) (17). This sug- 
gested that classificatioll could indeed be 
based on expression data. 

The second issue was how to use a col- 
lection of lu1onrn samples to create a "class 

AML ALL 

B 
~ M L  I L'ALL 

AML ALL Weight 

gene, D I 1 
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Fig. 1. Schematic il lustration o f  methodology. (A) Neighborhood analysis. The class distinction is 
represented by an "idealized expression pattern" c, in which the expression level is uniformly high 
in class 1 and uniformly low in class 2. Each gene is represented by an expression vector, consisting 
o f  its expression level in each o f  the tumor  samples. In the  figure, the data set is composed of six 
AMLs and six ALLs. Gene g, is wel l  correlated w i th  the  class distinction, whereas g, is poorly 
correlated. Neighborhood analysis involves counting the number o f  genes having various levels o f  
correlation w i th  c. The results are compared t o  the  corresponding distribution obtained for random 
idealized expression patterns c*, obtained by randomly permuting the coordinates o f  c. An 
unusually high density of genes indicates that  there are many more genes correlated wi th the 
pattern than expected by chance. The precise measure of distance and other methodological details 
are described in (16, 17) and on our Web site (www.genome.wi.mit.edu/MPR). (B) Class predictor. 
The prediction o f  a new sample is based on  "weighted votes" o f  a set of informative genes. Each 
such gene gi votes for either AML or ALL, depending on  whether its expression level x in  the sample 
is closer t o  kAML or kALL (which denote, respectively, the mean expression levels o f  AML and ALL 
in a set o f  reference samples). The magnitude of the vote is wiv, where w, is a weighting factor that  
reflects how wel l  the gene is correlated w i th  the class distinction and vi = 1 x, - (kAML + kALL)/2 1 
reflects the deviation of the  expression level in  the sample f rom the average o f  kaML and pALL The 
votes for each class are summed t o  obtain to ta l  votes VA,, and VAL,. The sample IS assigned t o  the 
class w i th  the higher vote total,  provided that  the prediction strength exceeds a predetermined 
threshold. The prediction strength reflects the margin of victory and is defined as (Vwin - 
VLose)/(Vwln + VLase), where VWln and VLoSe are the respective vote totals for the winning and losing 
classes. Methodological details are described in  (19, 20) and on  the Web site. 

piedictoi" capable of assignrilg a ae\x sample 
to one of two classes U e deleloped a plo- 
cedure that uses a fixed subset of "lnfonna- 
tive genes" (chosen based on their correlation 
a l th  the class distinction) and makes a ple- 
diction on the basis of the expression level of 
these genes in a new sample Each infoma- 
tive gene casts a "neighted 1 ote" fol one of 
the classes, nit11 the magnitude of each x ote - 
dependent on the expiessioil level in the nerv 
sample and the degree of that gene's collela- 
tion \\it11 the class distinction (Fig 1B) (IS, 
19).  The votes were summed to determine the 
winning class, as well as a "prediction 
strength" (PS): which is a measure of the 
margin of x-ictoiy that ranges froin 0 to 1 (20). 
The sample was assigned to the winning class 
if PS exceeded a predetermined threshold, 
and was otherwise considered uncertain. On 
the basis of previous analysis, we used a 
threshold of 0.3 (21). 

The third issue was how to test the validity 
of class predictors. We used a hvo-step proce- 
dure. The accuracy of the predictors was first 
tested by cross-validation on the initial data set.' 
(Briefly, one x\itlholds a sample, builds a pre- 
dictor based only on the reinainii~g saillples; 
and predicts the class of the witld~eld sailrple. 
The process is repeated for each sanlple, and 
the cmllulative error rate is calculated.) One 
then builds a final sredictor based on the initial 
data set and assesses its accuracy on an inde- 
peildeilt set of samples 

Yi7e applied this approach to the 38 acute 
leultelnia samples. The set of infor~llative 
genes to be used in the predictor was chosen 
to be the 50 genes most closely coi-related 
\\it11 AML-ALL distinction in the known 
san~ples The parameters of the predictor 
were determined by the expressron lexels of 
these 50 genes in the lu1ox\11 saillples The 
predictor was then used to classify nexl sam- 
ples. by applying it to the expression levels of 
these genes in the sample. 

The 50-gene predictors deiived in cross- 
validation tests assigned 36 of the 38 saillples as 
either AIvIL or ALL and the remaining two as 
unceitain (PS < 0.3) (22). 411 36 predictions 
ag~eed a it11 the patients' clinical diagnosis 

We then created a 50-gene pledictol on 
the basis of all 38 saillples and applied it to an 
independent collection of 34 leukemia sam- 
ples The speclinens consisted of 24 bone 
marrow and 10 peripheral blood samples 
(23). In total, the predictor made strong pre- 
dictions for 29 of the 34 samples, and the 
accuracy \\as 100%. The success was notable 
because the collection included a much 
broader range of samples. including samples 
from peripheral blood rather than bone mar- 
row, from childhood AML patients, and from 
different reference laboratories that used dif- 
ferent sample preparation protocols. Overall, 
the prediction strengths were quite high (me- 
dian PS = 0.77 in cross-validation and 0.73 
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in independent test) (Fig, 34) .  The average 
prediction strength was lower for samples 
from one laboratory that used a very different 
protocol for sainple preparation. This sug- 
gests that clinical implementation of such an 

treated xiith an anthracycline-cytarabine reg- 
imen and for whom long-telm clinical fol- 
low-up was ax-ailable (29). Eight patients 
failed to achiex-e remission after induction 
chemotherapy, while the remaining seven re- 

discox-ered automatically. For example; if the 
AML-ALL distinction were not already 
knomn. could it have been discovered simply 
on the basls of gene expression" 

Class disco\ ery entalls tlio issues (I) de- 
approach should include standardization of 
sample preparation. 

The choice to use 50 infolmatix-e genes in 

mained in remission for 46 to 84 months. 
Neighborhood analysis found no striking ex- 
cess of genes correlated with response to 

veloplng algorithms to cluster tumors by gene 
expression and (ii) determlnlng nhether pu- 
tative classes produced by such clustering 
algorlthins are meaningful-that is, whether 
they reflect true structure in the data rather 

the predictor was somewhat arbitrary. The 
number was well within the total nuinber of 

chemotherapy, in contrast to the situation for 
the AML-ALL distinction, and class predic- 
tors that used 10 to 50 genes were not highly 
accurate in cross-validation. We thus found 
no ex-idence of a strong multigene expression 
signature correlated with clinical outcome; 
although this could reflect the relatively small 

genes strongly correlated with the class dis- 
tinction (Fig. 2); seemed likely to be large 
enough to be robust against noise, and was 
small enough to be readily applied in a clin- 
ical setting. In fact, the results were insensi- 

than simply random aggregation. 
To cluster tumors, we used a technique 

called self-organizing maps (SOMs), which 
is particularly well suited to the task of iden- 
tifying a small nuinber of prominent classes 

tive to the pai-ticular choice: Predictors based 
on between 10 and 200 genes were all found 
to be 100% accurate, reflecting the strong 
correlation of genes with the AML-ALL dis- 
tinction (24). 

The list of infolmatix-e genes used in the 
AML versus ALL predictor was highly in- 
stmctix-e (Fig. 3B). Some, including CDllc ,  
CD33, and IWB-1; encode cell surface pro- 
teins for which n~onoclonal antibodies have 

sainple size. Nonetheless, we examined the 
most highly correlated genes for potential 
biological significance. The single most high- 
ly correlated gene out of the 6817 genes was 
the hoineobox gene HOAXY, which was over- 
expressed in patients with treatment failure. 
Notably, HOXAY is rearranged by a t(7; 

in a data set (32). In this approach, the user 
specifies the number of clusters to be identi- 
fied. The SOM finds an optimal set of "cen- 
troids" around nrhich the data points appear 
to aggregate. It then partitions the data set, 
with each centroid defining a cluster consist- 
ing of the data points nearest to it. 

We applied a two-cluster SOhl to auto- 
matically group the 38 initial leukemia sam- 
ples into two classes on the basis of the 
expression pattern of all 6817 genes (33). We 
first evaluated the clusters by comparing 
them to the known AML-ALL classes (Fig. 
4A). The SOM paralleled the known classes 
closely: Class A1 contained mostly ALL (24 
of 2.5 samples) and class A2 contained mostly 
AML (10 of 13 samples). The SOM was thus 

1 l)(pl 5:pl j )  chromosoinal translocation in a 
rare subset of AML patients. who tend to 
have poor outcomes (30) Furthemlore, 
HOAX9 overexpression has been shown to 
transform myeloid cells in vitro and to cause 

been demonstrated to be useful in distin- 
guishing lymphoid from myeloid lineage 
cells (25). Others provide new markers of 
acute leukemia subtype. For example; the 
leptin receptor; originally identified through 
its role in weight regulation, showed high 
relative expression in AIML. The leptin recep- 

leukemia in animal models (31). A general 
role for HOXA9 expression in predicting 
AML outcome has not been previously sug- 
gested. Larger studies will be needed to test 
this hypothesis. 

tor was recently demonstrated to have anti- 
apoptotic function in hematopoietic cells 
(26). Similarly, the zyxin gene has been 
shown to encode a LIM domain protein im- 
portant in cell adhesion in fibroblasts, but a 

We next turned to the question of class 
discovery. The initial identification of cancer 
classes has been slow, typically evolving 
through years of hypothesis-driven research. 
We explored whether cancer classes could be 

quite effective, albeit not perfect, at automat- 
ically discovering the two types of leukemia. 

We then considered how one could eval- 
uate such putative clusters if the "right" an- 
swer were not already known. We reasoned 

role in hematopoiesis has not been reported 
(27). 

We had expected that the genes most use- 
ful in AML-ALL class vrediction would sim- 

High in ALL High in AML 

loooO i 10°00 / ply be markers of hematopoietic lineage, and 
would not necessarily be related to cancer 
pathogenesis. However, many of the genes 

O b i e l ~ e d  

Perniuted 

... .. 

- 5 $6 - median 

encode proteins critical for S-phase cell cycle 
progression (Cyclin 0 3 ,  Op18, and :WC:W3), 
chromatin remodeling (RbAp48 and S:VF2), 
trallscription (TFIIEP), and cell adhesion 
(zyxin and CDllc)  or are known oncogenes 
(c-MYB, E2A and HOXA9). In addition, one 
of the illformative genes encodes topoisom- 
erase 11, \vhich is the principal target of the 
antileukemic drug etoposide (28). Together, 1.5 1 0.5 0 -0 5 1 

Measure of Correlation 

5 1 0 5  0 -05 
Measure of Correlation 

these data suggest that genes useful for can- 
cer class prediction may also provide insight 
into cancer pathogenesis and pharmacology. 

The methodology of class prediction can 
be applied to any measurable distinction 

Fig. 2. Neighborhood analysis: ALL versus AML. For the 38 leukemia samples in the initial data set, 
the plot shows the number of genes within various "neighborhoods" of the ALL-AML class 
distinction together with curves showing the 5 and 1% significance levels for the number of genes 
within corresponding neighborhoods of the randomly permuted class distinctions (76, 77). Genes 
more hinhlv expressed in ALL compared to AML are shown in the left panel; those more highlv 

among tumors. Importantly, such distinctions express& AML compared to ALL'are shown in the right panel. The large number of genes high& 
could concern a future clinical outcome- correlated with the class distinction is apparent. In the left panel (higher in ALL), the number of 

such as whether a prostate cancer out to genes with correlation P(g,c) > 0.30 was 709 for the AML-ALL distinction, but had a median of 173 
genes for random class distinctions. P(g,c) = 0.30 is the point where the observed data intersect be Or a breast cancer responds to a the 1% significance level, meaning that 1% of random neighborhoods contain as many points as 

given chemotherapy. we the the observed neighborhood around the AML-ALL distinction. Similarly, in the right panel (higher in 
to predict response to chemotherapy among AML), 71 1 genes with P(g,c) > 0.28 were observed, whereas a median of 136 genes is expected for 
the 1.5 adult AML patients \vho had been random class distinctions. 
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that class discovery could be tested by class 
prediction: If putative classes reflect true 
structure, then a class predictor based on 
these classes should perform well. 

To test this hypothesis, we evaluated the 
clusters A1 and A2. We constructed predic- 
tors to assign new samples as "type Al" or 
"type A2." Predictors that used a wide range 
of different numbers of informative genes 
performed well in cross-validation. For ex- 
ample, a 20-gene predictor gave 34 accurate 
predictions with high prediction strength, one 
error, and three uncertains (34). The one 
"error" was the assignment of the sole AML 
sample in class A1 to class A2, and two of the 
three uncertains were ALL samples in class 
A2. The cross-validation thus not only 
showed high accuracy, but actually refined 
the SOM-defined classes: With one excep- 
tion, the subset of samples accurately classi- 
fied in cross-validation were those perfectly 
subdivided by the SOM into ALL and AML 

Cross-Val Independent B 

classes: The results suggest an iterative pro- 
cedure for refining clusters, in which an SOM 
is used to initially cluster the data, a predictor 
is constructed, and samples not correctly pre- 
dicted in cross-validation are removed. The 
edited data set could then be used to generate 
an improved predictor to be tested on an 
independent data set (35). 

We then tested the class predictor of the 
A 1 4 2  distinction on the independent data set. 
In the general case of class discovery, predic- 
tors for novel classes cannot be assessed for 
"accuracy" on new samples, because the "right" 
way to classify the independent samples is not 
known. Instead, however, one can assess 
whether the new samples are assigned a high 
prediction strength. High prediction strengths 
indicate that the structure seen in the initial data 
set is also seen in the independent data set. The 
prediction strengths, in hct, were quite high: 
The median PS was 0.61, and 74% of samples 
were above threshold (Fig. 4B). To assess these 

Fig. 3. (A) Prediction strengths. The scatter- 
plots show the prediction strengths (PSs) for 
the samples in cross-validation (left) and on the 
independent sample (right). Median PS is de- 
noted by a horizontal line. Predictions with PS 
< 0.3 are considered as uncertain. (0) Genes 
distinguishing ALL from AML The 50 genes 
most highly correlated with the ALL-AML class 
distinction are shown. Each row corresponds to 
a gene, with the columns corresponding to 
expression levels in different samples. Expres- 
sion levels for each gene are normalized across 
the samples such that the mean is 0 and the SD 
is 1. Expression levels greater than the mean 
are shaded in red, and those below the mean 
are shaded in blue. The scale indicates SDs 
above or below the mean. The top panel shows 

results, we performed the same analyses with 
random clusters. Such clusters consistently 
yielded predictors with poor accuracy in cross- 
validation and low prediction strength on the 
independent data set (Fig. 4B). On the basis of 
such analysis (36), the A1-A2 distinction can 
be seen to be meaningful, rather than simply a 
statistical artifact of the initial data set. The 
results thus show that the AML-ALL distinc- 
tion could have been automatically discovered 
and confirmed without previous biological 
knowledge. 

We then sought to extend the class dis- 
covery by searching for finer subclasses of 
the leukemias. We used a SOM to divide the 
samples into four clusters (denoted B1 to 
B4). We subsequently obtained immunophe- 
notype data on the samples and found that the 
four classes largely corresponded to AML, 
T-lineage ALL, B-lineage ALL, and B-lin- 
eage ALL, respectively (Fig. 4C). The four- 
cluster SOM thus divided the samples along 
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C-myb (U22.376) 
RoleaareiaU(X50417) 
MB-I lU(15259) 
cyd* D3 (Msns7) 
n)ror*rieki.(mlzll) 
RMp48 (Xf4X2) 
SNP2 (Oabl%) 
m-I (SU#13) 
M (MIISU) 
Wmcibk pada (l-47738) 
D p i n  u* ebb R I - W )  
T ~ U B ( Z I 5 I I S )  
IRPZ (X 1 S W )  
rprrncm-, 
AcyECocapc A d d y b p w  (M91432) 
SNP;!(W9175) 
(Cd+kA;rp.lt GWS8l) 
s m  (UM998) 
MCM3 (Dm33 
hybypairc s p t k  (U26266) 
Op I 8  (M3IYU) 

Fmnm'ybrr(mWc (MS5I.W) 
Zynin (X957351 
Ltr4synlhsc (US0136) 
LYN (MI #)M) 
k A 9  (U82759) 
CD33 (M231971 
AdiDia lM84526) 
~ e ~ i i n  mqm (Y 12670) 
C w n  C (M27891) 
Pmqqlym I (XI M421 
IL-S cvrmm, 

(M%326) 
1 =5l) 
cm (-1 
MCLl ~U)BU6) 
A l l b c  (M62762) 
l L - 8 ~ ~ l I o )  
C*hepr D(M63138) 
Lc-XM (M577lO) 
-3 (M69M3) 
CDI lc(kEB1695) 
~ w n ( x 8 5 1 1 6 )  
Lymzmc (M 19045) 
propdin (M8.W2) 
CrJ.lc(XOPOBS) 

9 -2.5 -2 1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 
low Normalized Expression hi& 

genes highly expressed in ALL the bottom panel shows genes more illustrating the value of a multigene prediction method. For a complete list 
highly expressed in AML Although these genes as a group appear of gene names, accession numbers, and raw expression valws, see www. 
correlated with class, no single gene is uniformly expressed across the dass, genome.wi.mkedu/MPR 
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R E P O R T S  

another key biological distinction. 
We again evaluated these classes by con- 

structing class predictors (37). The four 
classes could be distinguished from one an- 
other, with the exception of B3 versus B4 
(Fig 4D). The prediction tests thus confirmed 
the distinctions corresponding to AML, B- 
ALL, and T-ALL, and suggested that it may 
be appropriate to merge classes B3 and B4, 
composed primarily of B-lineage ALL. 

The class discovery approach thus auto- 
matically discovered the distinction between 
AML and ALL, as well as the distinction 
between B-cell and T-cell ALL. These are the 
most important distinctions known among 
acute leukemias, both in terms of underlying 
biology and clinical treatment. With larger 
sample collections, it would be possible to 
search for finer subclassifications. It will be 
interesting to see whether they correspond to 
existing subclassifications for AML and ALL 
or define new groupings perhaps based on 
fundamental similarities in mechanism of 
transformation. 

In principle, the class discovery techniques 
above can be used to identify fundamental sub- 
types of any cancer. In general, such studies 
will require careful experimental design to 

avoid potential experimental artifacts-espe- 
cially in the case of solid tumors. Biopsy spec- 
imens, for example, might have gross differenc- 
es in the proportion of surrounding stromal 
cells. ~ l inda~~l ica t ion of class discovery could 
result in identifying classes reflecting the pro- 
portion of stromal contamination in the sam- 
ples, rather than underlying tumor biology. 
Such "classes" would be real and reproducible, 
but would not be of biological or clinical inter- 
est. Various approaches could be used to avoid 
such artifacts-such as microscopic examina- 
tion of tumor samples to ensure comparability, 
purification of tumor cells by flow sorting or 
laser-capture microdissection, computational 
analysis that excludes genes expressed in stro- 
ma1 cells, and confirmation of candidate marker 
genes by RNA in situ hybridization or immu- 
nohistochemistry to tumor sections. 

Class discovery methods could also be 
used to search for fundamental mechanisms 
that cut across distinct types of cancers. For 
example, one might combine different can- 
cers (for example, breast tumors and prostate 
tumors) into a single data set, eliminate those 
genes that correlate strongly with tissue type, 
and then cluster the samples based on the 
remaining genes. 

We also describe techniques for class pre- 
diction, whereby samples can be automatically 
assigned to already-recognized classes. Cre- 
ation of a new predictor involves expression 
analysis of thousands of genes to select a set of 
informative genes (we used 50 genes, although 
other choices also performed well) and then 
validating the accuracy of the assignments 
made on the basis of these genes. Subsequent 
application of the predictor then requires only 
monitoring the expression level of these infor- 
mative genes. We described a class predictor 
able to accurately assign samples as AML or 
ALL. We have also similarly constructed a 
class predictor that accurately assigns ALL 
samples as either T-ALL or B-ALL (38). These 
class predictors could be adapted to a clinical 
setting, with appropriate steps to standardize the 
protocol for sample preparation. We envisage 
such a test supplementing rather than replacing 
existing leukemia diagnostics. Indeed this 
would provide an opportunity to gain clinical 
experience with the use of expression-based 
class predictors in a well-studied cancer, before 
applying them to cancers with less well-devel- 
oped diagnostics. 

More generally, class predictors may be 
usell in a variety of settings. First, class pre- 

Fig. 4. ALL-AML class discov- A ery. (A) Schematic representa- C 
tion of two-cluster SOM. A 
two-cluster (2 by 1) SOM was 
generated from the 38 initial 
leukemia samples, with a 
modification of the GENE- ALL • AML AML T-ALL B-ALL 
CLUSTER computer package 
(32). Each of the 38 samples is B 2-Cluster SOM Random Classes 
thereby placed into one of two 

D 

dusters on the basis of Dat- Cross-Val Independent Cross-Val Cross-Val B21B4 83/84 01/04 62/03 01/02 BlIB3 

terns of gene expression' for 
the 6817 genes assayed in 
each sample. Cluster A1 con- 
tains the majority of ALL sam- 
ples (gray squares) and cluster 
A2 contains the majority of 
AML samples (black circles). 
(B) Prediction strength (PS) 
distributions. The xatterplots 
show the distribution of PS 
scores for class predictors. The 
first two plots show the distri- 
bution for the predictor creat- 
ed to classify samples as "Al- 
tvw" or "A2-tv~e" tested in 
&ss-validation bn the initial 02 - 
data set (median PS = 0.86) 
and on the independent data 0.1 - 
set (median PS = 0.61). The re- 
maining plots show the distri- o *- 
bution for two predictor~ cor- 
responding t o  random classes. In these cases, the PS scores are much 
lower (median PS = 0.20 and 0.34, respectively), and about half of the 
samples fall below the threshold for prediction (PS = 0.3). A total  of 
100 such random predictors were examined, t o  calculate the distri- 
bution of median PS scores t o  evaluate the statistical significance of 
the predictor for A1-A2 (36). (C) Schematic representation of the 
four-cluster SOM. AML samples are shown as black circles, T-Lineage 
ALL as open squares, and B-lineage ALL as gray squares. T- and 
B-lineages were differentiated on the basis of cell-surface immu- 

nophenotyping. Class B1 is exclusively AML, class B2 contains all eight 
T-ALLs, and classes 83 and 84 contain the majority of B-ALL samples. 
(D) Prediction strength (PS) distributions for pair-wise comparison 
among classes. Cross-validation prediction studies show that the four 
classes could be distinguished with high prediction scores, with the 
exception of classes 83 and 84. These two classes could not be easily 
distinguished from one another, consistent with their both containing 
primarily B-ALL samples, and suggesting that 83 and 84 might best be 
merged into a single class. 
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dictors can be constmcted for lmown satholop 8. Recent reviews of ALL and AML therapy can be found in a variety of ways. One can use the Pearson corre- 

ical categolies-reflecting a tmor.s cell of oi..- in C. H. Pui and WW. E. Evans, N .  1. Med. 339,605 lation coefficient or the Euclidean distance. We used 
(1998); j. F. Bishop, Med. J. Aust. 170, 39 (1999); a measure of correlation, P(g,c), that emphasizes the 

igill, stage, Or grade. predictors co~lld R, M, Stone and R, j. Mayer, Hematol. Oncol. Clin. N .  "signal-to-noise" ratio in using the gene as a predic- 
~rovide diaa~ostic confirn~ation or clarifb un- Am. 7, 47 (1993). tor: Let /i*,(a),o,(ail and irr,iai,u,(a)l dendte the . . , , - . , , - , . . . , - , , - . . 
bsual This point Rras illustrated 'by a 9. J. DeRi~i  eta!., Nature Genet. 14. 457 (1996); D. j .  means and SDs of the log of the expression levels of 

Lockhart et al., Nature Biotechnol. 14, 1675 (1996); gene g for the samples in class 1 and class 2, respec- 
recent A patient with a V. R. lver e ta [ . ,  Science 283, 83 (1999): L, Wodicka, tivelv. Let Pfa.c) = iu. fa)  - u- ia) l / iu . ia)  + u- ia ) l .  > ,  \., , ., , <\>,, . , \ > ,  <\>,,, 

classic leukemia  resellt tat ion (oancvtouenia. H. Done. M. Mittmann. M. H. Ho. D. I. Lockhart which reflects the difference between the classes 
~L , L  , ~ -~ ~ ~ ~~~ 

circulating "blasts") was diagnosed with M L ,  Nature i iotechnol. 15, 1359 (1997); '~.  T. 'Spellman et relative t o  the SD within the classes. Large values of 
a!., Mol. Biol. Cell 9, 3273 (1998); M. Schena et dl., 1 ~ ( g , c )  1 indicate a strong correlation between the but with lno l~ l lo log~ ,  JT'e the proc. ~ ~ t l .  *cad, 5~; .  u . 5 . ~ .  93, 10614 (1996); G, p, gene expression and the class distinction, while the 

0ppolt~~lifJ to apply our class predictor to a Yang, D. T. ROSS, W. W. Kuang, P. 0. Brown, R, j .  i ign of P(g,c) being positive or negative corresponds 
bone maiso\v sample from this patient. The Weigel, Nucleic Acids ReS. 27, 1517 (1999). t o g  being more highly expressed in class 1 or class 2. 

classifier produced lo\+, vote totals 10. E. 5. Lander, Science 274. 536 (1996); j .  DeRisi, eta!., Unlike a standard Pearson correlation coefficient, 
Nature Genet. 14, 457 (1996); j .  Kononen et a!., P(g,c) is not confined t o  the range [-I, + I ] .  Neigh- 

for both AI\JL and ALL: Neither lqnlphoid- llor Nature Med. 4,844 (1998); j .  Khan et al., Cancer Res. borhoods N,(c,r) and N,(c,r) of radius r around class 
~nveloid-specific genes were hinhlv exsressed. 58, 5009 (1998); K. A. Cole e t  a!., Nature Genet. 2 1  1 and class 2 were defined t o  be the sets of genes - - ,  L 

t11~1s bringing into question the diagnosis of 
acute leukemia. Exaiaii~ation of the expression 
profile revealed that genes more highly ex- 
pressed relative to the leukemias included those 
encoding tropomyosm, muscle-specific actin, 
decolin, and IGF-2, suggestive of a inesenchy- 
ma1 origin, such as muscle (39). In fact, inde- 
pendent cytogenetic analysis identified a t(2; 
13)(q35;q14) translocation characteristic of the 
muscle h~inor alveolar rl~abdomyosarcoma 
(40). The patient's diagnosis was revised ac- 
cordingly. and tTeatillent was changed from 
AVlL therapy to rl~abdomyosarcoma therapy. 
This experience underscores the fact that leu- 
kemia diagnosis relnains imperfect and could 
benefit from a batte1-y of expression-based pre- 
dictors for various cancers. 

Most impoltantly, the technique of class 
prediction can be applied to distinctions re- 
lating to future clinical outcome, such as drug 
response or survival. Class prediction pro- 
vides an unbiased, general approach to con- 
structlng such prognostic tests, provided that 
one has a collection of tumor sam~les  for 
which eventual outcoine is known. 
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The chemical heterogeneity of polysaccha­
rides, their structural complexity, and the lack 
of effective tools and methods have seriously 
limited the development of a sequencing ap­
proach that is rapid and practical, like that 
used for polynucleotides and polypeptides. 
This limitation is especially relevant in the 
study of glycosaminoglycan (GAG) complex 
polysaccharides, which are present at the cell 
surface and in the extracellular matrix (7, 2). 
Heparin or heparan sulfate-like glycosamino-
glycans (HLGAGs), a subset of GAGs, are 
currently used clinically as anticoagulants, 
and this function of HLGAGs has been as­
signed to a specific pentasaccharide sequence 
that is responsible for binding to antithrombin 
III (3). Recent progress in developmental bi­
ology, genetics, and other fields has resulted 
in a virtual explosion in the discovery of 
important roles for HLGAGs in the biological 
activity of morphogens (4) (for example, Wing­
less, Decapentaplegic, and Hedgehog); growth 
factors, cytokines, and chemokines (5); en­
zymes (1, 6); and surface proteins of micro­
organisms (7). Although it is increasingly rec­
ognized that a specific sequence, typically from 
a tetra- to a decasaccharide in size, is responsi-
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ble for HLGAGs' modulation of biological ac­
tivity, in only a few cases is there any structural 
information regarding sequences (8). There­
fore, accelerating our understanding of struc­
ture-function relationships for HLGAGs re­
quires the development of rapid yet thorough 
sequencing methodologies. 

There are many issues that have limited 
the development of sequencing techniques 
for HLGAGs. HLGAGs are chemically com­
plex and heterogeneous, because the HLGAG 
chain can vary in terms of the number of 
disaccharide repeat units and possesses, with­
in the disaccharide repeat unit, four potential 
sites for chemical modification. The basic 
disaccharide repeat unit of HLGAG is a 
uronic acid [a-L-iduronic acid (I) or p-D-
glucuronic acid (G)] linked 1,4 to a-D-hex-
osamine (H) (Fig. 1A). Together, the four 
different modifications (24 = 16) for an I or 
G uronic acid isomer containing disaccharide 
give rise to 16 X 2 = 32 different plausible 
disaccharide units for HLGAGs. In contrast, 
four bases make up DNA, and 2,0 amino acids 
make up proteins. With these 32 building 
blocks, an octasaccharide couldjiave over a 
million possible sequences, thereby making 
HLGAGs not only the most acidic but also 
the most information-dense biopolymers 
found in nature. There are no methods avail­
able to amplify or produce HLGAGs in large 
amounts, unlike the techniques that are avail­
able for DNA or proteins. 

To handle the enormous information den-
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Although rapid sequencing of polynucleotides and polypeptides has become 
commonplace, it has not been possible to rapidly sequence femto- to picomole 
amounts of tissue-derived complex polysaccharides. Heparin-like glycosami-
noglycans (HLGAGs) were readily sequenced by a combination of matrix-
assisted laser desorption ionization mass spectrometry and a notation system 
for representation of polysaccharide sequences. This will enable identification 
of sequences that are critical to HLGAG biological activities in anticoagulation, 
cell growth, and differentiation. 
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