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Multiple Ink Nanolithography: 
Toward a Multiple-Pen 

Nano-Plotter 
Seunghun Hong, Jin Zhu, Chad A. Mirkin* 

The fo rmat ion  of in t r icate nanostructures w i l l  require t h e  abi l i ty  t o  mainta in 
surface registry during several pat tern ing steps. A scanning probe method,  
dip-pen nanoli thography (DPN), can be used t o  pat tern monolayers o f  d i f ferent  
organic molecules d o w n  t o  a 5-nanometer  separation. An "overwr i t ing"  capa- 
b i l i ty  o f  DPN allows one nanostructure t o  be generated and t h e  areas sur- 
rounding t h a t  nanostructure t o  be f i l led in w i t h  a second t y p e  of "ink." 

Recently, there has been an intense effort to 
develop micro- and nanolithographic meth- 
ods analogous to macroscopic writing and 
printing tools (1-4). These methods are al- 
lowing researchers to address important is- 
sues in biology (5) and molecule-based elec- 
tronics (6-9). Microcontact printing (2-4) 
and even micropen writing ( I )  have been 
successful in terms of preparing molecule- 
based structures on the - 100-nm to centime- 
ter length scale. We recently showed that 
dip-pen nanolithography (DPN) allows one to 
prepare custom; "single-ink stlxch~res with 
dirnellsions on the sub-100 nm length scale 
(10). A significant issue in efforts to prepare 
nanolithographic printing tools pertains to 
registry-that is, how to use multiple inks 
within the context of one set of nanostruc- 
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tures spaced nanometers apart. At present, 
stamping procedures do not have the resolu- 
tion capabilities of scanning probe litho- 
graphic methods or electron-beam (e-beam) 
methods, and with respect to nlultiple inks; 
they pose significant aliglnnellt problems (4). 
Moreover, traditional high-resolution tech- 
niques (11-24); such as electron and ion 
beam lithography and many scanlling probe 
methods; rely on resist layers and the back- 
filling of etched areas with colnponent mol- 
ecules. These indirect patterning approaches 
can compromise the chemical purity of the 
structures generated and pose limitations on 
the types of materials and number of different 
materials that can be patterned. Indeed, adsor- 
bate-adsorbate exchange can be problematic 
because a monolayer resist, which has surface 
binding filnctionality identical to that in the ink, 
is typically used in these methods (18). 

We report the generation of multicompo- 
nent nanostmctures by DPN (10) and show 
that chemically plistine patterns of multiple dif- 
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Additionally; we report an overu~iting capabil- 
ity of DPN that allows one to ~enerate a nano- 
structure and then fill in areas surrounding that 
nanostructure with a second type of i~ik. These 
demonstrations are analogous to the transition 
fiom (single ink) conventional printing to 
"four-color" printing, and should open many 
oppommities for those interested in studying 
molecule-based electronics, catalysis, and mo- 
lecular diagnostics. Indeed, the spatial resolu- 
tion of this multiple ink technique is similar to 
the length scale of conventional large organic 
molecules and many biomolecules (nucleic ac- 
ids and proteins). 

DPN relies on a water meniscus. which in 
air naturally forms between the tip and sam- 
ple, as the ink transport medium, and there- 
fore, one can use relative humidity as one 
method of control over ink transport rate; 
feature size, and linewidth (10, 25, 26). Be- 
fore our invention of DPN, others attempted 
to develop scanning probe methods for de- 
positing organic materials on solid substrates 
(27). They demonstrated deposition of mi- 
crometer-scale features composed of phy- 
sisorbed rnultilayers of 1 -0ctadecanethio1 
(ODT) on mica but concluded that under the 
conditions used ODT could not be transpolt- 
ed to Au and, apparently, did not recognize 
the importance of humidity and the meniscus 
in the transport process. All DPN experi- 
ments were carried out with a ThermoMi- 
crosopes CP AFM and conventi~nal cantile- 
vers (ThermoMicroscopes sharpened Mic- 
rolever A, force constant = 0.05 N.;m). To 
minimize piezo tube drift problems, we used 
a 100-km scanner with closed loop scan con- 
trol for all of the experiments. The ink in a 
DPN experiment can be loaded by using a 
solution method, which was described previ- 
ously (lo), or by using a vapor deposition 
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method for liquids and low-melting point 
solids. The latter involves suspending the 
silicon nitride cantilever in a 100-ml reaction 
vessel 1 cm above the ink of interest. The 
system is closed, heated at 60°C for 20 min, 
and then allowed to cool to room temperature 
before use. Scanning electron microscopy 
analyses of tips before and after ink coating 
by solution or vapor deposition methods 
show that the inks uniformly coat the tips. 
The uniform coatings on these tips allow one 
to deposit adsorbate in a controlled manner as 
well as to obtain high-quality images. For 
example, 70-nm letters with 15-nm line- 
widths can be drawn on Au(ll1) by moving 
the tip along the substrate (2 nm/s speed, 
contact force -0.1 nN, relative humidity 
-23%) (Fig. 1). Imaging is done by increas- 
ing the scan size and imaging both patterned 
and unpatterned areas with the modified tip 
(contact force -0.1 nN, scan speed = 5 Hz, 
relative humidity -23%). Direct deposition 
of self-assembled monolayers (SAMs) on this 
scale has not been demonstrated by any other 
technique, and in view of the radius of cur- 
vature (- 10 nm) for Microlever A, this scale 
likely represents the linewidth resolution lim- 
it for DPN with this type of tip. However, it 
should be noted that an increase in DPN 
resolution may be possible by using sharper 
tips (such as nanotubes) (28-30). 

The ability of DPN to form and image 
nanostructures offers the prospect of generat- 
ing nanostructures made of different soft ma- 
terials with high registry. The basic idea for 
generating multiple patterns in registry by 
DPN is related to analogous strategies for 
generating multicomponent structures by e- 
beam lithography that rely on alignment 
marks. However, DPN has two distinct ad- 
vantages: (i) It does not make use of resists, 
and (ii) it uses the scanning probe for gener- 
ating and locating alignment marks. The lat- 
ter is important because it is less destructive 
than e-beam methodology for finding align- 
ment marks (that is, it is compatible with soft 
materials), and it is an inherently higher res- 
olution imaging technique than the optical or 

e-beam methods. 
We demonstrated the registration capabil- 

ities of DPN by generating a pattern of 15- 
nm-diameter, SAM dots of 16-mercaptohexa- 
decanoic acid (MHA) on one of the atomi- 
cally flat terraces of an Au(ll1) substrate 
(Fig. 2A). Each dot was formed by holding an 
MHA-coated tip in contact (contact force 
-0.1 nN, relative humidity -23%) with the 
Au(ll1) surface for 10 s. By increasing the 
scan size, the patterned dots are then imaged 
with the same tip by lateral force microscopy 
(LFM); because the SAM and bare Au have 
very different wetting properties, LFM pro- 
vides excellent contrast (31). Based on the 
position of the first pattern, the coordinates of 
additional patterns can be determined (Fig. 
2B) for the precise placement of a second 
pattern of MHA dots. The uniformity and 
5-nm spatial separation of the dots is apparent 
(Fig. 2A). The elapsed time between gener- 
ating the data in Fig. 2, A and C, was 10 min, 
demonstrating near perfect nanostructure 
alignment with a thermal drift of less than 1 
nm/min under ambient conditions. 

The method that we have developed for 

Fig. 1. Nanoscale molecular letters written on 
an Au(l l1) surface with MHA molecules by 
DPN. 

Fig. 2. Schematic diagram with LFM images of 
nanoscale molecular dots showing the essential 
requirements for patterning and-aligning mul- 
tiple nanostructures by DPN. (A) A pattern of 
15-nm-diameter MHA dots on Au(l l1) imaged 
by LFM with an MHA-coated tip. (B) Anticipat- 
ed placement of the second set of MHA dots as 
determined by calculated coordinates based on 
the positions of the first set of dots. (C) Image 
after a second pattern of MHA nanodots has 
been placed within the first set of MHA dots. 
The white jagged line is an Au(l l1) grain 
boundaty. 

generating pristine multiple ink nanostruc- 
tures in registry with one another required an 
additional modification of the experiment de- 
scribed above and in Fig. 2. Because the 
MHA SAM dot patterns were imaged with an 
ink-coated tip, it is likely that a small amount 
of undetectable ink is deposited in the unpat- 
terned area while imaging. Such deposition 
could significantly affect some applications 
of patterned materials prepared by DPN, es- 
pecially those dealing with electronic mea- 
surements on molecule-based structures. To 
overcome this problem, we make use of mi- 
crometer-scale alignment marks drawn with 
an MHA-coated tip (cross-hairs in Fig. 3A, 
contact force -0.1 nN, scan speed = 4 Hz, 
relative humidity -30%) to precisely place 
nanostructures on the Au substrate without 
cross-ink contamination. In a typical experi- 
ment, we draw an initial pattern of 50-nm 
parallel lines (contact force -0.1 nN, scan 
speed = 4 Hz) composed of MHA and sep- 
arated by 190 nm (Fig. 3A). This pattern is 2 
pm away from the exterior alignment marks. 
An image of these lines is not taken with the 
MHA-coated tip to avoid contamination of 
the patterned area. The tip is then replaced 
with an ODT-coated tip. This tip is used to 
locate the alignment marks (not the first set of 
lines), and then precalculated coordinates 

Fig. 3. Diagram depicting the method for gen- 
erating aligned soft nanostructures. (A) The 
first pattern is generated with MHA (denoted 
by white lines), along with microscopic align- 
ment marks (cross-hairs), by DPN. The actual 
lines are not imaged t o  preserve the pristine 
nature of the nanostructure. (B) The second set 
of parallel lines is generated with ODT mole- 
cules, on the basis of coordinates calculated 
from the positions of the alignment marks in 
(A). (C) LFM image of the interdigitated 50-nm- 
wide lines separated by 70 nm. 
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based on the position of the alignment marks 
(Fig. 3B) are used to pattern the, substrate 
with a second set of 50-nm parallel ODT 
SAM lines (contact force -0.1 nN, scan 
speed = 4 Hz) (Fig. 3C). These lines are 
placed in interdigitated manner and with near 
perfect registry with respect to the first set of 
MHA SAM lines (Fig. 3C). 

An additional capability of DPN, which we 
refer to as "overwriting," involves generating 
one soft structure out of one type of ink and 
then filling in with a second type of ink by 
raster scanning across the original nanostruc- 
ture. Because water is the transport medium in 
the DPN experiment and the water solubilities 
of the inks used in these experiments are very 
low, there is no detectable exchange between 
the molecules used to generate the nanostruc- 
ture and the ones used to overwrite on the 
exposed gold (Fig. 4). We used a MHA-coated 
tip to generate three geometric structures, a 
triangle (80-nm linewidth, 30-s writing time per 
side), square (60-nm linewidth, 20-s writing 
time per side), and pentagon (30-nm linewidth, 
8-s writing time per side) (contact force -0.1 
nN, scan speed = 4 Hz, relative humidity 
-35%). The tip was then changed, and a 3 pm 
by 3 km area that comprised the original nano- 
structures was overwritten with an ODT-coated 
tip by raster scanning four times across the 
substrate (contact force -0.1 nN, scan speed = 
4 Hz). Increasing the scan size to 4.3 pm by 4.3 
km and imaging the patterned areas with an 
uncoated tip (contact force -0.1 nN, scan 
speed = 5 Hz, relative humidity -35%) shows 
the MHA-patterned areas (white, high friction), 
the ODT-overwritten areas (dark blue, low fric- 
tion), and the surrounding unmodified Au (light 
blue, medium friction). 

The multiple ink capabilities of DPN will 
offer opportunities to begin studying the in- 
teractions between highly sophisticated, mul- 
ticomponent nanostructures and molecules in 
solution or the gas phase on a scale that was 
previously unattainable. Moreover, they will 
empower those in the field of molecule-based 
electronics to generate and evaluate custom- 

ized multicomponent soft nanostructures that 
are interfaced with macroscopically address- 
able circuitry. 
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Defensins contribute to host defense by disrupting the cytoplasmic membrane 
of microorganisms. This report shows that human P-defensins are also che- 
motactic for immature dendritic cells and memory T cells. Human P-defensin 
was selectively chemotactic for cells stably transfected to express human CCR6, 
a chemokine receptor preferentially expressed by immature dendritic cells and 
memory T cells. The P-defensin-induced chemotaxis was sensitive to pertussis 
toxin and inhibited by antibodies to CCR6. The binding of iodinated LARC, the 
chemokine ligand for CCR6, to CCR6-transfected cells was competitively dis- 
placed by P-defensin. Thus, P-defensins may promote adaptive immune re- 
sponses by recruiting dendritic and T cells to the site of microbial invasion 
through interaction with CCR6. 

Defensins, a family of small (3.5 to 4.5 kD) are found in mammals, insects, and plants 
cationic antimicrobial peptides with three to (1-4). On the basis of the position and bond- 
four intramolecular cysteine disulfide bonds, ing of six conserved cysteine residues, de- 

fensins in vertebrates are divided into two 
categories. designated as a- and B-defensins 
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